

Exotic quarkonium and spectroscopy

Moscow

Pavel Krokovny Budker INP on behalf of Belle II collaboration

- Introduction
- Observation of $Y(10753) \rightarrow \omega \chi_{bJ}(1P)$
- $Y(10753) \rightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}(1P)$
- $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$
- Summary

Bottomonium states

Below BB threshold states are well described by the potential models Above BB threshold states demonstrate unexpected properties:

- hadronic transitions are strongly enhanced (OZI rule violation)
- η transitions are not suppressed

compare to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ transitions (HQSS violation)

 two charged Z_b⁺ states are observed

Bottomonium states

Hadronic transitions from the states below the BB threshold are described by gluon emission (QCDME):

Hadronic transitions from the states above the BB threshold can be enhanced due to BB mesons rescattering:

 Z_b^+ states masses coincide with $B\overline{B}^* B^*\overline{B}^*$ thresholds and decays dominantly to constituent mesons:

Z_b decay mode	Branching fraction
$Z_b^+(10610) \to \Upsilon(nS)/h_b(mP)\pi^+$	$14.4^{+2.5}_{-1.9}\%$
$Z_b^+(10610) \to B^+ \bar{B}^{*0} / \bar{B}^0 B^{*+}$	$85.6^{+2.1}_{-2.9}\%$
$Z_b^+(10650) \to \Upsilon(nS)/h_b(mP)\pi^+$	$26.6^{+5.0}_{-4.7}\%$
$Z_b^+(10650) \to B^{*+}\bar{B}^{*0}$	$74^{+4}_{-6}\%$

This is a strong indication of the molecular nature of Z_b^+ states PRL, 108, 122001 (2012)

24-30 August

Discovery of Y(10753)

Observed in the $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$ cross section energy dependence by Belle JHEP 10 (2019) 220

What is the nature of Y(10753)?

- Tetraquark state: CPC 43, 12, 123102 (2019) PLB, 802, 135217 (2020)
- Hadronic molecule with a small admixture of a bottomonium:
 - PRD 103, 074507 (2021)
- Hybrid state: PRD 99, 1, 014017 (2019)

- Far from the thresholds
- Mass does not match Y(3D) theoretical predictions, and D-wave states are not seen in e⁺e⁻ collisions
- Y(4S) Y(3D) mixing can be enhanced due to hadron loops

24-30 August

Study of $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$

JHEP 06 (2021) 137

- $\sigma(e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)})$ has complicated energy dependence spectra, that hard to describe with resonance shapes
- Rescattering and opening of the various BB thresholds cause oscillatory behaviour due to the coupled-channel effect
- Coupled-channel approach is necessary to study $\sigma(e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)})$ shape

- To study Y(10753) nature
- Improve accuracy below Y(5S)

• Perform energy scan at the Belle II experiment

Requesting more data

• Two Belle II results will be presented: $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ and $\chi_b \rightarrow \gamma Y(1S)$ $e^+e^- \rightarrow B\overline{B}, B\overline{B}^*$ and $B^*\overline{B}^*$

24-30 August

SuperKEKB collider

- Asymmetric e⁺e⁻ collider
- Energy limit 11.02 GeV (up to 11.24)
- Luminosity goal: 6×10³⁵ cm⁻²s⁻¹
- Belle II goal: collect 50 ab⁻¹

parameters		КЕКВ		SuperKEKB		unite
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
bg		0	.425	0.28		
Half crossing angle	φ	11 ×		41 .5		mrad
Beta functions at IP	β_x^*/β_y^*	1200/5.9		60/0.3		mm
Beam currents	lь	1.64	1.19 🗕	2.5	1.8	А
Luminosity	L	2.1 x 10 ³⁴		6.5 x 10 ³⁵		cm ⁻² s ⁻¹
monosov 2023						9

Belle II detector

Data taking status

- New luminosity world record 4.65 x 10³⁴ cm⁻²s⁻¹
- Data taking efficiency is achieved almost 90%.
- Collected more than 400 fb⁻¹.

24-30 August

Data above Y(4S)

Y(10753) state was observed by Belle in the analysis of the $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$ (n = 1,2,3) cross section energy dependence JHEP 10 (2019) 220.

- Belle II collected 19 fb⁻¹ around Y(10753) in the gaps between Belle energy scan points
- 9.8 fb⁻¹ is taken near Y(10753) peak

24-30 August

- Confirmation of Y(10753) and observation of its new decay channels
- Order of magnitude difference is observed for this ratio at Y(5S) and Y(10753) indicates the difference in the internal structures of these two states:

$$\frac{\sigma(e^+e^- \to \chi_{bJ}(1P)\omega)}{\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)} \sim 24-30 \text{ August} \sim 1.5 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$

$$\sum_{Belle II} Motivation for Y(10753) \rightarrow \omega \eta_b(1S) / \chi_{b0}(1P)$$

• Tetraquark (diquark-antidiquark) interpretation of this state predicts enhancement of Y(10753) $\rightarrow \eta_b(1S)\omega$ transition: CPC 43 (2019) 12, 123102

$$rac{\Gamma(\eta_b \; \omega)}{\Gamma(\Upsilon \; \pi^+\pi^-)} \sim 30$$

• Since $\eta_{b}(1S)$ does not have easy for reconstruction decay channels, we reconstruct only $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$ and use its recoil mass to identify the signal:

$$M_{
m recoil}(\pi^+\pi^-\pi^0) = \sqrt{\left(rac{E_{
m c.m.}-E^*}{c^2}
ight)^2 - \left(rac{p^*}{c}
ight)^2}$$

• $e^+e^- \rightarrow \omega \chi_{b0}(1P)$ transition was not observed due to $B[\chi_{b0}(1P) \rightarrow Y(1S)\gamma] = (1.94 \pm 0.27)\%$; In charmonium sector $Y(4220) \rightarrow \chi_{c0}\omega$ decay was found to be enhanced compare to $Y(4220) \rightarrow \chi_{c1,2}\omega$ by BES III: PRD 99, 091103(R) (2019)

24-30 August

Events / 5 MeV

$Y(10753) \rightarrow \omega \eta_b (1S)/\chi_{b0} (1P)$ results

JHEP 10 (2019) 22: $\sigma[e^+e^- \rightarrow Y(nS)\pi^+\pi^-] \sim 2.0 \text{ pb}$

24-30 August

Reconstruction of $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$

- Previous Belle analysis: JHEP 06 (2021), 137
- One B meson is fully reconstructed using hadronic channels;
- $B^* \rightarrow B\gamma$ decays are not reconstructed;

$$\Delta E = E_B - E_{\rm cm}/2$$
$$\Delta E' = \Delta E + M_{\rm bc} - m_B$$

• $|\Delta E'| < 18$ MeV; Signal is identified using beam constrained mass:

$$M_{\rm bc} = \sqrt{E_{\rm cm}^2/4 - p_B^2}$$

$$\Delta E' vs M_{bc} at E_{cm} = 10.746 GeV$$

24-30 August

$e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ fit results

- Good description of the $M_{\mbox{\tiny bc}}$ in data
- Contribution of $Y(4S) \rightarrow B\overline{B}$ production via ISR is visible well described by the fit
- E=10.653 GeV sharp cut of the data at right edge \Rightarrow fast rise of B* \overline{B} * near threshold **24-30 August** Lomonosov 2023

$e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ cross section

18

Confirming previous Belle result:

- Solid curve combined Belle + Belle II data fit
- Dashed curve Belle data fit only

 $\sigma(e^+e^- \rightarrow B^*\overline{B}^*)$ rises rapidly above $B^*\overline{B}^*$ threshold:

- Similar behaviour was seen for D*D
 * cross section PRD 97, 012002 (2018)
- Possible interpretation: resonance or bound state ($b\overline{b}$ or $B^*\overline{B}^*$) near threshold MPL A 21, 2779 (2006)
- Also explains a narrow dip in $\sigma(e^+e^- \rightarrow B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \rightarrow B\overline{B}^*$ and $e^+e^- \rightarrow B^*\overline{B}^* \rightarrow B\overline{B}^*$
- Y $\pi^+\pi^-$ and $h_b\eta$ final states could also be enhanced PRD 87, 094033 (2013)

24-30 August

Study of $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$ (n = 1, 2, 3)

- Previously Belle observed Y(10753) using combined fit of $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$ (n = 1,2,3) cross section energy dependencies with 5.2 σ significance JHEP 10 (2019) 220.
- Belle II: Y(10753) is observed in the Born cross-section of $e^+e \rightarrow Y(1S,2S) \pi^+\pi^-$, while no evidence is found in $e^+e^- \rightarrow Y(3S) \pi^+\pi^-$ channel.

5.8 *o*

0.8 σ

Study of $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$ (n = 1, 2, 3)

- The hint of the Y(1S) $\pi^+\pi^-$ enhancement at the E_{CM} = 10.653 GeV could correspond to the inelastic decay of a molecular (B*B*) state.
- No signals of intermediate $Z_{b}^{+}(10610)$ or $Z_{b}^{+}(10650)$ resonances are observed.

24-30 August

Lomonosov 2023

Conclusion

Observation of $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ at $\sqrt{s} = 10.75 \text{ GeV}$

- $\sigma[e^+e^- \rightarrow \omega \chi_{bJ}(1P)]$ has a peak at 10.75 GeV
- Confirmation of Y(10753) and observation of its new decay channels

Search for $e^+e^- \rightarrow \omega \eta_b$ (1S) / χ_{b0} (1P) at \sqrt{s} = 10.75 GeV

- No significant signals are observed
- The upper limit on the Y(10753) $\rightarrow \eta_b(1S)\omega$ cross-section contradicts the prediction of the tetraquark model

Energy dependence of $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^*\overline{B}^*$

- Confirmation of "oscillatory" behavior, improvement of the accuracy
- Rapid rise of $\sigma(e^+e^- \rightarrow B^*\overline{B}^*)$ above threshold sign for molecular $B^*\overline{B}^*$ state?
- Study of $e^+e^- \rightarrow Y(1S)\pi^+\pi^-$ (n = 1,2,3)
- Y(10753) signals are observed in Y(1S,2S) $\pi^{+}\pi^{-}$ channels
- No signals of intermediate $Z_{\tt b}$ resonances are observed
- The hint of the Y(1S) $\pi^+\pi^-$ enhancement at the E_{CM}=10.653

Golden Modes $e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)$ *BB* decomposition | Preliminary results $\pi^+\pi^-$ Dalitz Preliminary result $Y_b \to \omega \eta_b(1S)$ $Y_b \to \omega \chi_{bJ}(1P)$ PRL **130**, 091902 (2023) Silver Modes $Y_b \to \pi^+ \pi^- X$ (inclusive) $Y_b \to \eta X$ (inclusive) $Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)$ $Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)$ $Y_b \to \Upsilon(1S)$ (inclusive) Bronze Modes $Y_b \to \gamma X_b$ $Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)$ $Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)$ $Y_b \to \pi^0 \pi^0 X$ (inclusive) $Y_b \to \pi^0 X$ (incl. or excl.) ...

24-30 August

Backup

