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Searches for invisible new particles at Belle 11
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Belle IT has unique sensitivity for a broad class of models postulating the existence of dark matter
particles with masses in the MeV—GeV range. We present recent world-leading results from Belle 11
searches for several non-SM particles. These include production of Z’ bosons, axion-like particles,

and dark scalars in association with two muons in e

Te~ collisions; long-lived (pseudo)scalars pro-

duced in decays of B-mesons; and invisible particles produced in decays of 7 leptons.

PACS numbers: 12.60.-i, 13.66.Hk, 95.35.4+d
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1. INTRODUCTION 35

36

Several astrophysical observations suggest the exis-7
tence of dark matter (DM), a component of matter 3
that does not interact through strong or electromag-3°
netic forces. Although DM constitutes approximately °
85% of the total matter in our Universe, its nature4
remains unknown. Dark Matter is one of the most 4
compelling phenomena in support for physics beyond 43
the Standard Model (SM). as

The lack of evidence of non-SM physics at the elec-4®
troweak scale leads to hypothesize sub-GeV DM par-4
ticles feebly interacting with SM particles through 4’
non-SM mediators. Sub-GeV DM and the non-SM me-*®
diators belong to the dark sector, and efforts to detect #°
them have been actively pursued at beam dump and*°
high-intensity frontier experiments. st

Belle IT [1, 3] is a high-intensity frontier experiment *2
that operates at the SuperKEKB e*e™ asymmetric-en-*3
ergy collider [2]. During the first data taking run®
(2019-2022), Belle II collected a sample of ete™ colli-**
sion data corresponding to 424 fb~! of integrated lu-5¢
minosity. Thanks to the excellent reconstruction capa-®”
bilities for low multiplicity and missing energy signa-
tures, and dedicated triggers, Belle II has a unique or
world-leading sensitivity to dark sector [4].

2. RECENT DARK SECTOR RESULTS AT
BELLE II

2.1. Search for an invisible Z’

The L, — L, model [5-7] introduces a light gauge bo-
son, Z', that violates lepton-flavor universality while
conserving the difference between muon and tau lepton
numbers. We search for the invisible decay of the Z’
through the process ete™ — putp~Z'(— inv.), where

* E-mail: luigi.corona@pi.infn.it

the Z’ is radiated off one of the muons. The Z’ could
decay invisibly to SM neutrinos, with a branching frac-
tion of B(Z' — inv.) ~ 33%, or to kinematically ac-
cessible DM candidates with B(Z" — inv.) = 100%.
A signal would appear as a narrow enhancement in
the recoil mass against the two final-state muons,
in events where nothing else is detected. The main
backgrounds are QED radiative di-lepton and four-lep-
ton final states. The backgrounds are suppressed us-
ing a neural-network trained simultaneously for all Z’
masses [9], and fed with kinematic variables sensitive
to the origin of the missing energy: in the signal, the
Z' is produced as final-state radiation (FSR); in the
background, the missing energy is due to neutrinos or
undetected particles. From 2D template fits to the re-
coil mass squared, in bins of recoil polar angle, we do
not observe any significant excess in 79.7 fb~! of data,
and we set 90% C.L. upper limits on the coupling of
the L, — L, model, ¢, as a function of the Z’ mass,
Mz:. We exclude the region favored by the (g —2),
anomaly [8], which could be explained by the L, — L,
model, in the mass range 0.8 < Mz < 5 GeV/c? for
the fully invisible L, — L, model (Fig. 1) [10, 11].
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Figure 1. Observed 90% C.L. upper limits and corre-

sponding expected limits on the ¢’ coupling as a function
of the Z’' mass, assuming B(Z' — inv.) = 100%.
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2.2. Search for ete™ — T p~ X (— 7H717)

We search for a X — 777~ resonance, where X
could be a Z’, a leptophilic dark scalar S, or an axion-#2
like particle (ALP), in ete™ — ptu~ 777~ events,®
with 7 decaying to one charged particle. The S is®*
an hypothetical particle that couples preferentially to
charged leptons through Yukawa-like couplings [12].%°
Axion-like particles are pseudo-scalars that appear in ®”
many SM extensions [13, 14]. a8

89
Similarly to the Z’ — inv. analysis, we search for

a narrow enhancement in the recoil mass against two,
oppositely charged muons, in four-track events with ,,
zero net charge. Standard Model backgrounds are sup-,,
pressed with eight neural-networks fed with kinematic ,,
variables sensitive to the X-production mechanism as
FSR off one of the two muons, and trained in different ,,
X-mass regions. From extended maximum likelihood
fits to the recoil mass distribution, we do not observe
any significant excess in 62.8 fb~! of data. We derive,,
world-leading 90% C.L. upper limits on the S-coupling,,,
¢ for mg > 6.5 GeV/c?, and on the ALP-lepton couy,,
pling |Cpe|/A, assuming equal ALP-couplings to the,,
three lepton families and zero couplings to all other,,,
particles (Fig. 2) [15].

Belle II [cdt=62.8 b1
103 BaBar 3
102 4
(g-2ux20
W
101 4
10° / 1
—— 90% C.L.UL Expected UL *10 Expected UL 20
10—1 1 | 1 I I I
3 4 5 6 7 8 9 10
ms [GeV/c?]
Belle II [cdt=62.8 b1
BaBar
—_ 103 L -
1
>
(0]
Lt
<
=
5 102 Cee = Cyy=Crr 4
- all other couplings = 0
— 90% C.L.UL Expected UL x10 Expected UL +20
101 1 | ! | ! !

3 4 5 6 7 8 9
MmaLp [GeV/CZ]

10

Figure 2. Observed 90% C.L. upper limits (UL) and cor-
responding expected limits as a function of the mass on

(top) the leptophilic scalar coupling &, and on (bottom) the
ALP-lepton coupling |Ce¢|/A.

X—2

2.3. +

Search for ete™ — putp~ X(— ptp™)

We search for a X — pTp~ resonance in ete™ —
uwTu~ptuT events as a narrow enhancement in the
dimuon mass distribution in four-track events with
zero net charge and no extra-energy. The dominant
background is the SM four-muon final-state process.
Background is suppressed applying five neural-net-
works fed with kinematic variables sensitive to the
X-production mechanism as FSR off one of the two
muons, and to the presence of a resonance in both
the candidate and the recoil muon pairs, and trained
in different X-mass ranges. From extended maximum
likelihood fits to the dimuon mass distribution, we do
not observe any significant excess in 178 fb=! of data,
and we set 90% C.L. upper limits on the cross section
of the process. We interpret the results obtained on
the cross section as 90% C.L. limits on the ¢’ coupling
of the L, — L; model, and on the coupling of a muon-
philic scalar S with muons [16]. Despite the small
data-set used, we obtain similar results with the exist-
ing limits on ¢’ from BABAR [17] and Belle [18], which
performed the analysis with 514 fb~! and 643 fb~! re-
spectively. We set the first limits for the muonphilic
scalar model from a dedicated search (Fig. 3).
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Figure 3. Observed 90% C.L. upper limits and correspond-
ing expected limits as a function of the mass on (top) the
g’ coupling of the L, — L, model, and on (bottom) the
muonphilic dark scalar model.
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2.4. Search for a long-lived (pseudo)scalar in

b — s transitions

127

Some extensions of the SM introduce a new lightrze
scalar S that may give mass to DM particles. Thes=e
scalar S would mix with the SM Higgs boson througlese
a mixing angle fg, and would be naturally long-liveds:
for small values of 0g. 132

We search for B — K*9(— K*t77)S and B+ —*3
KT8 events, with S — 272~ (z = e,pu,m, K) form#*
ing a decay vertex displaced from the B decay vertex!>®
The signal yield is extracted through extended max?3®
imum likelihood fits to the reduced invariant mass?®’
of S, mg_,,. VMZ_, . —4m2, in order to im?®*
prove the modeling of the signal width close to the=®
kinematic thresholds. Main background components“®
are the combinatorial eTe™ — g, suppressed by re:*
quiring a kinematics similar to B-meson expectations;*?
B - KKg(— ntn™), vetoed; and B — KzTx~ de**
cays Wlthout intermediate long-lived particles decay*4
ing to z7x~, suppressed by tightening the displace?
ment selections. we do not observe any significant ex24°
cess in 189 fb~! of data, and we set the first model-in*”
dependent limits at 95% C.L. on B(B — K S) x B(S —*
xtx™) as a function of the scalar mass mg for different*®
S-lifetimes (Fig. 4) [19]. 180
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Figure 4. Observed 95% C.L. on B(B — KS) x B(S —nss
m+m7) as a function of the scalar mass mg for differentise

lifetimes cr.
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2.5. Search for the 7 — fa decay

Charged-lepton flavour violation (LFV) is allowed
in various extensions of the SM, however it has never
been observed. In these extensions, the LF'V processes
could be mediated by a new hypothetical o boson.
We search for an invisible @ produced in the 7 — fa
decay, with £ = e,u, in ete™ — 777~ events. In
the center-of-mass frame, 7 pairs are produced back-
-to-back so that the decay products of each 7 lep-
ton are contained in two separate hemispheres. The
tag hemisphere contains three charged hadrons from
Toag — h~hTh~v., with h = 7, K, while the signal
hemisphere contains only one charged lepton from the

Tag — £~ decay.

For this analysis, 7 — fr,1; is an irreducible back-
ground. However, the lepton momentum has a broad
distribution for the background, while it depends only
on the o mass for the signal and it appears as a bump
over the irreducible background. In particular, we
search for an excess over the normalized lepton energy
spectrum z¢ of 7 — (v, where xy = 2E} /m,, per-
forming template fits. The energy E; is defined in the
approximate rest frame of 7y, i.e. where E, ~ /s/2
and /s is the energy in the center-of-mass frame, and
the 74 direction is opposite to the 7¢,s direction. We
do not find any significant excess in 62.8 fb~! of data,
and we set world-leading 95% C.L. upper limits to
B(r — fa)/B(t — Lgv,), as a function of the M,
mass [20]. Fig. 5 shows the results for [ = e.

1073
L Belle Il
18| [Ldt=628 10"
16F
14F
12F

- Observed UL [Jl| Expected UL = 1 std. dev.

--- Expected UL

Expected UL + 2 std. dev.

B(t »ea)/B (T —>e V,V,)
3

0.7 1

M, [GeV/c?}

Figure 5. Upper limits at 95% C.L. on the ratio B(r —
ea)/B(T — evevy).

3. SUMMARY

We presented the latest Belle II world-leading re-
sults from dark sector searches. The results use sub-
sets of the 424 fb~! collected to date. New results
with improved analyses and larger data samples are
expected to push further the Belle II sensitivity to the
dark sector.
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