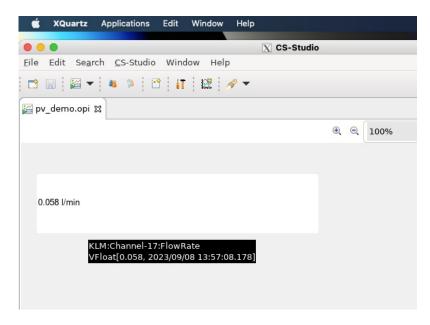
ISU KLM Meeting

September 13

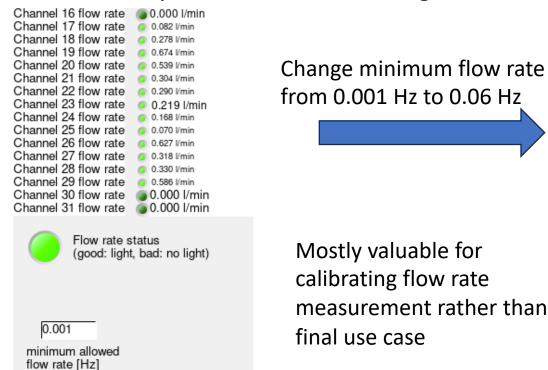
Noah Brenny, Avinash Khatri

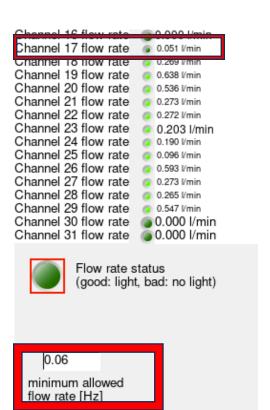

Summary

- 1. b2nsm networking update
- 2. GUI first steps
- 3. GUI additions
- 4. GUI next steps
- 5. Other items

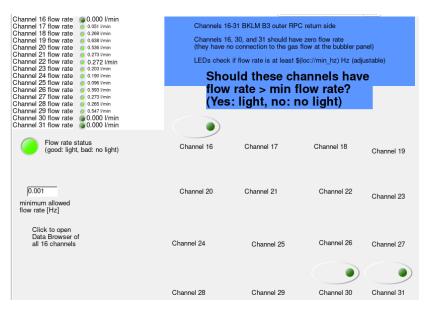
Networking Update

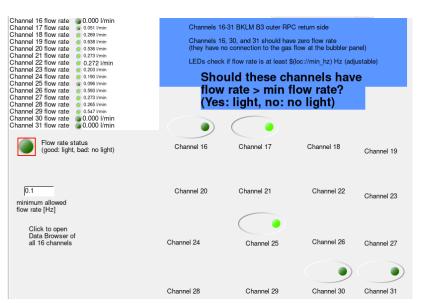
- Nakao-san agreed to add one RaspberryPi to the b2nsm network
 - pi2 now has an IP on b2nsm: klmpi2.b2nsm.kek.jp has address 172.22.35.228
 - No news on KLM private network yet, but Michele indicates it should be simple once Sourav is free ~ September 30
- pi2 has ethernet connection to KLM switch
 - Can use ssh from bdaq: "ssh pi2@172.22.35.228", password: Belle2
 - Reminder: readout board attached to BB3 outer RPC return side bubbler
- Can read see PVs on network: see next slide


- Tommy Lam suggested we use a CSS installation on klmpc03 for development
- First step: we can see PVs on CSS

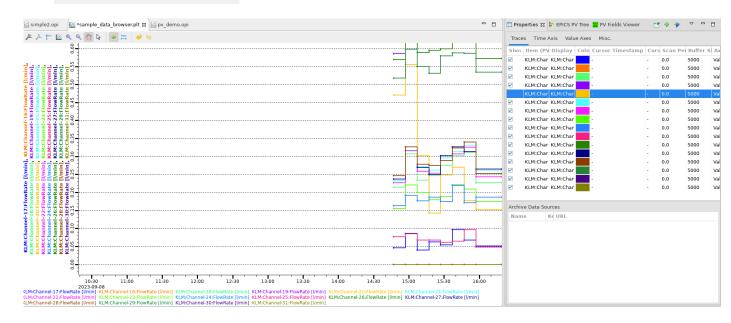


- Second step: basic GUI
 - LEDs indicate channel status (bubble rate > 0 Hz)
 - and(channels<16-31>) LED indicating if all channels are running
 - Channels 16, 30, and 31 are disconnected at the bubbler panel, so exclude them from the and() LED


```
Channel 16 flow rate
                     © 0.000 I/min
Channel 17 flow rate
                        0.064 I/min
Channel 18 flow rate
                      0.267 l/min
Channel 19 flow rate
                      0.633 l/min
Channel 20 flow rate
                     0.500 l/min
Channel 21 flow rate
                      0.291 l/min
Channel 22 flow rate
                     0.262 l/min
Channel 23 flow rate
                      0.185 l/min
Channel 24 flow rate
                     0.200 l/min
Channel 25 flow rate
                      @ 0.086 I/min
Channel 26 flow rate
                      0.601 l/min
Channel 27 flow rate
                      0.288 l/min
Channel 28 flow rate
                      0.278 l/min
Channel 29 flow rate
                        0.556 I/min
Channel 30 flow rate
                      ■0.000 l/min
Channel 31 flow rate
                      @ 0.000 I/min
          Flow rate status
           (good: light, bad: no light)
```


- Third step: various additions
 - Adjust minimum allowed flow rate that light up an LED
 - e.g. if our code tells us that a disconnected channel's bubble rate is 0.001 Hz, only channels with a bubble rate larger than 0.001 Hz lights up an LED
 - User can vary the value while running

- Third step: various additions
 - Maybe a channel other than 16, 30, 31 is expected to have less than minimum bubble rate
 - Add Boolean controls that indicate/control this behavior
 - Boolean buttons only visible when a channel has less than minimum bubble rate



Expected case

Case where minimum bubble rate is expected to be > 0.1 Hz

- Third step: various additions
 - Open a time series plot of the 16 channels' bubble rates

Click to open Data Browser of all 16 channels

This still needs some adjustment

- Next steps
 - Would like to have a home page with and() LEDs for each RaspberryPi with subpages like the one we have developed, reachable by a click
- Maybe we can see how it works developing with Phoebus
 - After attending "Discussion for migration from CSS to Phoebus" meeting, it seems it might be best to just start from Phoebus
 - These GUI files are not very complicated, so they should be fine
 - Might still be worth a shot to start right from Phoebus

Other Items

PV naming

- What is the configuration again?
 - For each Pi there are how many channels?
 - For each sector there are how many Pis?
- Currently the PV names for one board, one ribbon cable are "KLM:Channel-</ri>i>:FlowRate" with i 00-63
- Would prefer to switch to "KLM:Bubbler:Sector<j>:Channel<k>:FlowRate"
 - More consistent with existing PV names from other subdetectors
 - Sector number determined by hostname?
 - Can have identical copies of the software on each Pi

Archiving

- Not yet completed
- Will contact Seokhee Park or whoever is now responsible for registering PVs to b2arch1