

B anomalies at Belle II

Elisa Manoni (INFN Perugia) on behalf of the Belle II collaboration

Anomalies & B-physics

- Standard Model (SM) predictions greatly confirmed by a variety of falvour and non-flavour measurements
- Hints for anomalies from indirect searches of New Physics (NP) effects: some are gone, some are persisting
- Will focus on Belle II NP searches in :
 - $R(D^{(*)})$ and R(X) from $b \rightarrow c \ell \nu$
 - $B^+ \rightarrow K^+ \nu \overline{\nu}$

Belle II is an ideal playground for the study of B finals states with missing energy: ref to Belle II nearly 4π detector general talk constraints from well-known initial state kinematics clean environment compared to hadron collidesr

$R(D^*)$ and R(X) measurements

Elisa Manoni

LFU tests with $b \rightarrow c \ell v$: overview

• Four searches with 189 fb⁻¹

* = in this talk

 $-\mu$ and e:

- Common key element: hadronic tag
 - fully reconstruct one B(tag) in a variety of hadronic modes through a machine-learning-based alghoritm (FEI ref)
 - search for the signal signature in its recoil
 - sub-% tagging efficiency, allow to reduce background contamination and infer signal side kinematics

Elisa Manoni

R(D*) measurement

- Ratio in exclusive seraches:
- $R(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})}$
- $B \rightarrow D^* \tau \nu$ and $B \rightarrow D^* \ell \nu$ measured by two-dimensional binned likelihood fit to
 - missing mass of undetected neutrinos
 - total energy from extra photons (E_{ECL})
- Result:

$$R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat.}) \stackrel{+}{_{-0.039}}$$

- Main systematic uncertainty from MC statistics and E_{ECL} modeling
- Consistent with SM and previuos measurements Elisa Manoni

 $R(X_{\tau/\ell})$ measurement (1)

• Going inclusive:

 $R(X_{\tau/\ell}) = \frac{\mathcal{B}(B \to X)}{\mathcal{B}(B \to X)}$

- alternative to $R(D^{(*)})$ measurements: theoretically more clean, potentially more precise from the experimental point of view
- First measurement at B factories
- Variables for yield extraction:
 - missing mass of undetected neutrinos (M^2_{miss})
 - lepton momentum in B rest frame ($p^{B_{\ell}}$)

Elisa Manoni

$$\frac{X\tau\nu}{X\tau\nu}, \quad \ell = e, \mu$$

Experimentally challenging due to background contamination from many modes —> extensive use of control samples to correct and validate fit templates and background expectation

 $R(X_{\tau/\ell})$ measurement (II)

• Results:

separating electrons and muons:

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

combining lepton-flavours

 $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

- Main systematic uncertainties from knowledge of BF and form factors for signal and normalization mode, PDF shape, MC statistics
- In agreement with SM prediction and R(D^(*)) measurements

Elisa Manoni

INFN Perugia

7

$R(X_{e/\mu})$ measurement

- While warming up for $R(X_{\tau/\ell})$, measured
- Similar analysis wrt ratio with τ 's
- Result:

 $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat)} \pm 0.019 \text{ (syst)}$

- Dominant systematic uncertainty from lepton identification
- Consistent with SM expectation, most precise measurement to date

Elisa Manoni

ure
$$R(X_{e/\mu}) = \frac{\mathcal{B}(B \to X e \nu)}{\mathcal{B}(B \to X \mu \nu)}$$

INFN Perugia

REF

Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$

Elisa Manoni

Motivation and experimental status

Theory:

- $b \rightarrow s$ transition prohibitherd at tree level in the SM
- SM branching fraction: $(5.6 \pm 0.4) \times 10^{-6}$ [ref]
- Can receive contrinution from BSM physics
 - new mediations, new invisible particles in the final state [refs]

Experiment:

- Challenges:
 - low branching fraction with large background
 - no peak two neutrinos leads to no good kinematic constraint
- Signal not observed from previous measurements

Unique to Belle II

Elisa Manoni

Belle II measurement analysis techniques

More conventional

Separate signal from background by exploiting signal kaon, event topology, rest-of-event/extra particles information in multivariate classifiers.

Elisa Manoni

• Updated serach for $B^+ \rightarrow K^+ \nu \overline{\nu}$ with full pre-LS1 dataset (362 fb⁻¹) using two methods:

Efficiency q_{rec}^2 : mass squared

of the neutrino pair

Purity, Resolution

Most sensitive technique

Background suppression and signal extraction strategy

- Single BDT forbackground suppressioni in HTA
- 2 BDTs in cascade for ITA
 - BDT1 as basic filter; BDT2 as main tool for background suppression, x3 sensitivity increase wrt BDT1
- Measure signal branching fraction μ in units of SM rate = 4.97×10⁻⁶ (no B+ $\rightarrow \tau$ (K+ ν) $\bar{\nu}$)
- Fit extraction variables:
 - ITA: q² and classifier output
 - HTA: classifier output

Analysis tuned on simulation \longrightarrow a variery of control samples used to correct for data/simulation discrepancy and validate analysis strategy (in the follwong validation shown for ITA, applicable to HTA)

Elisa Manoni

Signal efficiency Validation

- Use $B^+ \rightarrow J/\psi(\mu\mu)K^+$ control channel
 - remove muons from J/ψ and replace K⁺ kinematics from simulated signal events to match signal topology (both in data and MC)
- Data/MC efficiency ratio: 1.00 ± 0.03 → good agreement
- 3% is included as signal shape systematic uncertainty

Background validation

Some examples:

- off-resonance data to validate modeling of qq background
 - derive corrections of shape and normalization and related systematics
- Pion-enriched sideband to validate modeling of $B \rightarrow X_c (\rightarrow K_L + X)$:
 - +30% normalization scale factor suggested by data
- $B^+ \rightarrow K^+ K_s K_s$ used to model $B^+ \rightarrow K^+ K_L K_L$ (signal-like, with BF one order of magnitude larged than SM signal rate)
 - generous systematic uncertainty assigned for potential isospin-breaking effects and other assumptions

Closure test: measuring a known and rare mode

- Minimally adapt ITA $B^+ \rightarrow K^+ \nu \overline{\nu}$ to measure $\mathsf{BF}(\mathsf{B}^+ \rightarrow \pi^+ \mathsf{K}^0)$
 - similar branching fraction to SM $B^+ \rightarrow K^+ \nu \overline{\nu}$

- Measured BF($B^+ \rightarrow \pi^+ K^0$) = (2.5 ± 0.5) x 10⁻⁵
 - consistent with PDG [$(2.38 \pm 0.08) \times 10^{-5}$]

Elisa Manoni

Systematic uncertainties

- Dominant sources of systematic uncertainties for ITA (and impact on signal strenght error) : (spoiler: statistical uncertainty =1.1)
 - 50% uncertainty on the $B\overline{B}$ background normalization motivated by observed discrepancies (0.88)
 - Limited size of simulation sample for the fit model (0.52)
 - 20% uncertainty on the $B^+ \rightarrow K^+ K_L K_L$ decay rate given it is unmeasured (0.48)
 - Uncertainties on the modeling of $B^+ \rightarrow D^{(**)} \ell \nu$ decays (0.42)
- For the HTA, use similar set of systematic uncertainties. Dominant are background normalization, simulation statistics, and systematic on mismodeling of extra-photon multiplicity.

Elisa Manoni

Conclusions

- B decays with missing energy in the final state: optimal ground for NP searches in the flavour sector
- energy
- Several test of LFU on 189 fb⁻¹:
 - first Belle II measurement of R(D*)
 - measurement of $R(X_{e/\mu})$
- First evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$, 2.8 σ above SM prediction.

• Belle II is an ideal playground for the study of B finals states with missing

• unique measurement of $R(X_{\tau/\ell})$, first of a kind at B-factories; most precise

Extra-slides

Elisa Manoni

