JENNIFER2 SUMMER SCHOOL ON PARTICLE PHYSICS AND DETECTORS 20-27 6-15 July 2020 KEK, Tsukuba, Japan REMOTE

Particle Detectors 01

Francesco Forti, INFN and University, Pisa Jennifer2 Summer School 20-27 July 2020

Francesco.Forti "at" pi.infn.it

Università di Pisa Dipartimento di Fisica "Enrico Fermi"

Outline

OЗ

- Introduction

 A tour of particle-matter interactions
 Heavy charged particles
 Electron and positrons
 Hadrons
 Neutrinos

 Detector technologies
 Gas ionization detectors
 - Semiconductor detectors
 - Scintillators and photodetectors
 - Modern detector systems
 - Tracking/vertexing
 - Particle identification
 - Calorimetry
 - Conclusion

2

Introduction

What's all about

Particle detectors

- Particle detectors are the basic tools to observe phenomena in the ultra small field of high energy physics.
- Most particles decay after a very short time, depending on the kind of interaction that causes the decay
 - Strong interactions $< 10^{-22} s$
 - Electromagnetic interactions $10^{-20} 10^{-14}s$
 - Weak interactions > 10^{-13} s
- Only long-lived particles can be observed directly in detectors, the parent particles must be reconstructed indirectly:

Particle measurement - preconditions

Particles can be measured if

a) They live long enough to reach the detector. $l_{\text{track}} = \beta \gamma c \tau_0$

+ τ_0 is the lifetime at rest; l_{track} is the average track length for a particle of 1GeV/c momentum.

	γ	р	n	e±	μ [±]	π [±]	K±	K ^o (K _S /K _L)
m (MeV)	0	938	939	.511	105	140	494	498
τ ₀ (ns)	8	∞	∞	∞	2200	26	12	0.089/51
I _{track} @1GeV(m)	∞	∞	∞	∞	6100	5.5	6.4	0.05/27.5

• + neutrinos: stable, but with very weak interaction

b) They interact with the detector and produce a detectable signal

Particle measurement - requirements

- Ideally one would like to measure all the properties of a particle produced in an experiment:
 - particle type, momentum p, energy E, mass m, charge q, life time t, spin, decay modes, ...
- Ideally one would like to make the measurement without modifying the particle trajectory or energy
 - Although some modifications are unavoidable to produce a detectable signal
- For short-lived particles, obtain information by the properties of the daughters

Bubble chamber image of Ω^- discovery

Particle measurement – properties

Momentum p	Radius of curvature in magnetic field p=qRB	Position B B
Charge q	Direction of deflection in magnetic field up/down, right/left	measure- ments
Energy E	Full energy absorption in a calorimeter ∝ released charge, produced light	Shower of secondary particles
Lifetime τ	Measurement of decay length Extrapolation of daughter particles	
Velocity β	Time of flight measurement, dE/dx, Cherenkov emission threshold or angle	$r(4S) = e^{-} e^{+} B_{CP} = J/\psi K_{S}^{0} = \pi^{+}$
Mass m / Identity	Calculated from E, p or p, β $m^2 = E^2 - p^2$ $p = m\beta/\sqrt{1-\beta^2}$	Boost $\sim 130 \mu m$ at Belle II Form vertex from daughter particles

Units

Quantity	HEP units	SI Units		
length	1 fm	10 ⁻¹⁵ m		
energy	1 GeV	1.602 · 10 ⁻¹⁰ J		
mass	1 GeV/c ²	1.78 ⋅ 10 ⁻²⁷ kg		
ħ=h/2	6.588 · 10 ⁻²⁵ GeV s	1.055 ⋅ 10 ⁻³⁴ Js		
С	2.988 · 10 ²³ fm/s	2.988 · 10 ⁸ m/s		
ħc	0.1973 GeV fm	3.162 ⋅ 10 ⁻²⁶ Jm		

Natural units ($\hbar = c = 1$)						
mass	1 GeV					
length	1 GeV ⁻¹ = 0.1973 fm					
time	1 GeV ⁻¹ = 6.59 · 10 ⁻²⁵ s					

WE NEED EYES TO SEE

Wishful thinking: π^0 lifetime too short

Detectors are our eyes

Classification of detectors

By physical mechanism

- Ionization detectors
- Scintillation detectors
- Cherenkov detectors
- (Transition radiation det.)

By detector material

- Gas filled detectors
- Liquid filled detectors
- Solid state detectors

By measured property

- Charged particles charge, position and momentum (tracking/vertexing)
- Particle total energy (calorimetry)
- Particle type (Particle IDentification)

By purpose/experiment

- Fixed target detectors
- Collider detector
- Massive neutrino detectors

Sources

- Books:
 - S.N.Ahmed Physics and Engineering of Radiation Detectors, Elsevier 2015
 - W.R. Leo <u>Techniques for Nuclear and Particle Physics Experiments</u>, Springer 1994
 - G.F. Knoll Radiation detection and measurement, Wiley 1989
 - K.Kleinknecht Detectors for Particle Radiation, Cambridge, 1998
 - C.Grupen Particle Detectors, Cambridge, 2009
 - C.W.Fabjan, J.E.Pilcher <u>Instrumentation in elementary particle physics</u>, World Scientific, 1988
 - T.Ferbel, ed. Experimental Techniques in High Energy Physics, World Scientific, 1991
 - F.Sauli, ed. Instrumentation in High Energy Physics, World Scientific, 1992
 - R.Wigmans <u>Calorimetry: Energy Measurement in Particle Physics</u>, Oxford Scholarship Online, 2018
 - W.Blum, W.Riegler, L.Rolandi Particle Detection with Drift Chambers, Springer 2008
 - R.K.Bock, A.Vasilescu The Particle Detector BriefBook, Springer 1998
- Lessons
 - E. Garutti <u>Slides</u> at DESY
 - H.-C. Schultz-Coulon & J. Stachel <u>Slides</u> at Heidelberg
- Particle Data Group The Review of Particle Physics <u>https://pdg.lbl.gov/</u>

Thanks for answering the survey

• It looks like a large majority would like to hear about particlematter interactions, at least as a refresher

How would you like Part_01 to be presented ? 46 responses

How familiar are you with particle-matter interactions ? 46 responses

- Not at all, I already know that stuff
- Quickly, as a refresher
- In detail, I am not really familiar with the topics
- No opinion

A tour of particle-matter interactions

A very quick overview of how particles interact with matter

Charged particles interactions

- Atomic excitation / ionization
 - Incident particle excites or ionizes an atom
 - Produces charge or light through de-excitation
- Bremstrahlung (only e^- , e^+)
 - Incident e⁻, e⁺ is deflected in nucleus electric field, radiating a photon
- Cherenkov radiation (fast particles)
 - EM shock wave produced by particle traveling faster than light in medium
- (Transition radiation very high energy)
 - Relativistic particle electric field re-arrangement at boundary of different permittivity causes photon irradiation

Ionization energy loss -dE/dx: a summary

July 20, 2020

- Loss of heavy particles (M>> $m_{electron}$) dominated by elastic scattering with atomic electrons --> Bethe-Bloch formula

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

$$K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV } g^{-1} \text{ cm}^2$$

$$\begin{split} W_{max} &= 2m_e c^2 \beta^2 \gamma^2 / (1 + 2\gamma \, m_e / M + (m_e / M)^2) \\ & [Max. \ \text{energy transfer in single collision}] \end{split}$$

- Z : Charge number of medium
- A : Atomic mass of medium
- : Mean excitation energy of medium
- δ : Density correction [transv. extension of electric field]

 $N_{A} = 6.022 \cdot 10^{23}$ [Avogardo's number]

 $r_e = e^2/4\pi\epsilon_0 m_e c^2 = 2.8 \text{ fm}$ [Classical electron radius]

m_e = 511 keV [Electron mass]

 $\beta = V/C$ [Velocity]

 $\gamma = (1 - \beta^2)^{-2}$ [Lorentz factor]

> $.05 < \beta \gamma < 500$ M > m_µ

Validity:

July 20, 2020

Main features of dE/dx

-dE/dx dependence on material

Energy loss at small momenta

Energy loss of electron and positrons

- Differences in ionization:
 - Incident and target particles have the same mass (e- and e+)
 - Incident and target particles are identical particles (e- only)
- \rightarrow modification to Bethe Bloch formula
 - (simplified):

$$\left. \frac{dE}{dx} \right\rangle_{Ionization} \propto \ln(E)$$

- For E>10-30MeV the dominating process is Bremstrahlung
 - Radiation of a photon from an electron accelerated in the field of an atom

$$e^- + N \rightarrow e^- + N + \gamma$$

Bremsstrahlung and Radiation length

The energy loss through Bremsstrahlung can be written as

$$-\frac{dE}{dx} = 4\alpha N_A \; \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \; \ln\frac{183}{Z^{\frac{1}{3}}}$$

- Features:
 - Proportional to $\frac{E}{m^2} \implies$ only relevant for electrons or very energetic muons.

$$-\frac{dE}{dx} = \frac{E}{X_0} \implies E(x) = E_0 e^{-x/X_0} \qquad X_0 = \frac{A}{4\alpha N_A \ Z^2 r_e^2 \ \ln\frac{183}{Z^{\frac{1}{3}}}}$$

- X_o is called "radiation length" = distance after which electron energy is reduced to 1/e. $r_e = \frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2} = 2.8 \text{ fm}$
 - r_o is the classical electron radius
 - Formula gives X₀ in g/cm²

Energy loss of e⁻e⁺ summary

Material properties

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-atomic-nuclear-prop.pdf

https://pdg.lbl.gov/2020/AtomicNuclearProperties/index.html

Material	Z	A	$\langle Z/A \rangle$	Nuclear a	Nuclear a	$dE/dx _{\min}^{b}$	Radiat	ion length '	² Density	Liquid	Refractive
				collision	interaction	(MeV)		X_0	$\{g/cm^3\}$	boiling	index n
				length λ_T	length λ_I	$\left\{\frac{1}{\pi/am^2}\right\}$	{g/cm ²	2 {cm}	$(\{g/\ell\}$	point at	$((n-1)\times 10^6$
				$\{g/cm^2\}$	$\{g/cm^2\}$	(g/cm)			for gas)	$1 \mathrm{atm}(\mathrm{K})$	for gas)
H_2 gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \ ^{d}$	(731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28 ^d	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024[34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		_
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		—
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		_
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233[283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		—
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		_
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		_
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		_
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		_
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		_
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		
Air, (20°C, 1 atm.), [STP]		0.49919	62.0	90.0	(1.815)	36.66	[30420]	(1.205)[1.2931]	78.8	(273) [293]	
H_2O	-		0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
CO ₂ gas			0.49989	62.4	89.7	(1.819)	36.2	[18310]	[1.977]		[410]
CO_2 solid (di	ry ice)		0.49989	62.4	89.7	1.787	36.2	23.2	1.563	sublimes	
Shielding con	crete f		0.50274	67.4	99.9	1.711	26.7	10.7	2.5		—
SiO ₂ (fused q	uartz)		0.49926	66.5	97.4	1.699	27.05	12.3	$2.20^{\ g}$		1.458
Dimethyl eth	er. (CH ₃)	00	0.54778	59.4	82.9		38.89			248.7	

Cherenkov radiation

- Cherenkov radiation is emitted if the particle's velocity is larger than the speed of light in medium of refractive index n
- A coherent conical wave front develops (shock wave). Cherenkov photons are emitted at a specific angle.

- It can be used as a yes/no threshold or to measure the photons angle and find $\beta.$
- Amount of enery lost by Cherenkov radiation negligible.

 $\cos \theta_c$

Collateral damage: multiple scattering

- Particles going through a material are subject to many scattering events from the Coulomb field of the nuclei
- Results in uncertainties in direction when traversing material
- X_0 = radiation length

Photons

- In photon interactions the interacting photon is lost.
- The energy of the non-interacting photons is unchanged
 - Very different from charged particle interactions
- The electron produced in the interaction can then be detected
- The photon beam intensity is exponential: $I(x) = I_0 e^{-\mu x}$
 - μ (cm²/g) is the mass absorption coefficient including all processes
 - The mean free path is $\rho\lambda = 1/\mu$
- Photoelectric effect
 - The photon is absorbed by an atomic electron which is ionized
- Compton effect
 - The photon scatters off an electron, resulting in an Photon ionized electron and photon with different energy
- Pair production
 - The photon produces a e^+e^- pair in the field of the nucleus

F.Forti, Particle Detectors 01

Photoelectric effect

• The photon is absorbed by an electron from the atoms shell. The transferred energy ionizes the electron

 $\gamma + \text{Atom} \rightarrow e^- + \text{Ion}^+$

- The energy of the electron is $E_e = E_{\gamma} \Phi$ where Φ is the binding energy of the electron.
- Cross section for high photon energy
 - σ_0 is the Thomson cross section for elastic scattering of photons on electrons

$$\sigma_{\rm photo} = \frac{3}{2} \alpha^4 \sigma_0 Z^5 \frac{m_e c^2}{E_\gamma} \propto \frac{Z^5}{E_\gamma}$$

Very strong material dependence: Z⁵

Compton effect

• In Compton scattering the photon energy is large compared to the binding energy of the electron

$$\gamma + \operatorname{Atom} \to \gamma + e^- + \operatorname{Ion}^+$$

• The emerging photon has longer wavelength and different direction wrt the incident photon

Klein-Nishina formula for the angle dependent cross section :

$$\frac{d\sigma_c}{d\Omega} = \frac{r_e^2}{2} \frac{1}{\left[1 + \kappa (1 - \cos\theta)\right]^2} \left(1 + \cos^2\theta + \frac{\kappa^2 (1 - \cos\theta)^2}{1 + \kappa (1 - \cos\theta)}\right)$$

 $\kappa = E_{\gamma}/m_e c^2$ "reduced" photon energy

Pair production

• A photon can produce e⁺e⁻ pair in the field of the nucleus

 $\gamma + \text{nucleus} \rightarrow e^- + e^+ + \text{nucleus}$

- Mimimum photon energy: $E_{\gamma} > 2m_e + (\text{recoil energy}) > 1.022 \text{Mev}$
- At high energy pair production is dominant. Cross section is independent of energy:

$$\sigma_{\text{pair,nucl}} = 4\alpha r_e^2 Z^2 \left[\frac{7}{9} \ln \left(\frac{183}{Z^{1/3}} \right) - \frac{1}{54} \right] \quad \text{for} \quad \frac{E_{\gamma}}{m_e c^2} > \frac{1}{\alpha Z^{1/3}}$$

• Mean free path for pair production is related to radiation length: same diagram as Bremsstrhlung $e^+ e^- \gamma e^-$

$$\rho \lambda_{\text{pair}} = \frac{A}{N_A \sigma_{\text{pair}}} \quad ; \quad \rho \lambda_{\text{pair}} = \frac{9}{7} X_0$$

Photon absorption summary

Hadronic interactions

- Neutral hadrons (neutrons, KO) interact only hadronically with the nuclei of the materials
 - Strong interaction has a short range
 - Small probability of a reaction
 - Neutrons are very penetrating
- Many processes are possible

 $\sigma_{\text{total}} = \sum \sigma_i = \sigma_{\text{elastic}} + \sigma_{\text{n,inelastic}} + \sigma_{\text{capture}} + \sigma_{\text{fission}} + \cdot$

• Define theⁱ collision and absorption lengths

$$\rho \lambda_{\rm t} = \frac{A}{N_A \sigma_{\rm total}} \quad ; \quad \rho \lambda_{\rm a} = \frac{A}{N_A \sigma_{\rm inelastic}} \quad ; \quad \sigma_{\rm total} = \sigma_{\rm elastic} + \sigma_{\rm inelastic}$$

• All these process create charged particles (proton recoil, nuclear debris) that can be detected

Neutron interactions

Values for high energy neutrons ($\approx 100 \text{ GeV}$) in various materials:

Material	$\sigma_{ m tot}$ (barn)	o _{inelastic} (barn)	$\lambda_t ho$ (g/cm²)	$\lambda_a ho$ (g/cm²)	λ_t (cm)
H ₂	0.0387	0.033	43.3	50.8	516.7
С	0.331	0.231	60.2	86.3	26.6
AI	0.634	0.421	70.6	106.4	26.1
Fe	1.120	0.703	82.8	131.9	10.5
Cu	1.232	0.782	85.6	134.9	9.6
Pb	2.960	1.77	116.2	194	10.2
Air (NTP)			62.0	90.0	~51500
H ₂ O			60.1	83.6	60.1
Polystyrol			58.5	81.9	56.7

Neutrinos

- Neutrinos interact only weakly. The cross section is extremely small.
- Typical reactions used:

 $\nu_{e,\mu,\tau} + n \to (e,\mu,\tau)^- + p \quad ; \quad \bar{\nu}_{e,\mu,\tau} + p \to (e,\mu,\tau)^+ + n$

- For instance, the probability ϵ of interaction of 200 GeV neutrinos is:

```
1 \text{ m of iron } \epsilon \sim 5 \cdot 10^{-17} \qquad 1 \text{ km of water } \epsilon \sim 6 \cdot 10^{-15}
```

- Very large detector systems or very intense neutrino fluxes are required to have a signal
 - ktons / Mtons of water, ice, liquid Argon, liquid scintillator, Fe/detector sandwich

Take away summary

- What happens ? Only long-lived particles are observerd
- Charged particles \rightarrow ionization, Cherenkov, radiation
- Neutral particles \rightarrow interact and produce charged particles
- Photon \rightarrow photoelectric, Compton, pair production
- Neutron, Kaon \rightarrow hadronic interactions
- Neutrinos \rightarrow weak interactions
- What signal do we observe ? Charge or light
- What properties can we measure ? Momentum, Charge, Lifetime, Energy, Velocity, Mass.

End of part Ol