JENNIFER2 SUMMER SCHOOL ON PARTICLE PHYSICS AND DETECTORS 20-27 6-15 July 2020 KEK, Tsukuba, Japan REMOTE

Particle Detectors 02

Francesco Forti, INFN and University, Pisa Jennifer2 Summer School 20-27 July 2020

Università di Pisa Dipartimento di Fisica "Enrico Fermi"

Outline

Particle detector technologies

The basis for detector systems

Detectable signals

- Ionization charge
- Scintillation light
- Cherenkov photons
- For neutral particles: first interaction produces charged particles and possibly a shower --> detection of charged particles with above signals
- To detect a signal:
 - Connect to electrodes collecting charge
 - Transform light in electrical signal
 - Connect to amplifier and readout system

Gas ionization detectors

Gas ionization detectors principle

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

 δ -electrons are a small fraction of the ionization electrons that have enough energy to ionize other atoms

Gas detectors parameters

- Ionization energy: E_i
- Energy per ion-e⁻ pair: W_i
 - Need more than the ionization energy to create a pair
- Number of primary ion-e pairs: n_P
- Number of total ion-e pairs: n_T

• n_T is a factor 2-6 larger than n_P

- If L = layer thickness
- Typical values
 - W_i=30 eV
 - n_T =100 pairs / 3 keV energy loss

$$n_T \rangle = \frac{L(-dE/dx)}{W_i}$$

Table of parameters for most common gases

|--|

Gas	ho (g/cm ³) (STP)	<i>I₀</i> (eV)	W _i (eV)	<i>dE/dx</i> (MeVg ⁻¹ cm ²)	<i>n_p</i> (cm ⁻¹)	<i>n_t</i> (cm ⁻¹)
H ₂	8.38 · 10 ⁻⁵	15.4	37	4.03	5.2	9.2
He	1.66 · 10 ⁻⁴	24.6	41	1.94	5.9	7.8
N ₂	1.17 · 10 ⁻³	15.5	35	1.68	(10)	56
Ne	8.39 · 10 ⁻⁴	21.6	36	1.68	12	39
Ar	1.66 · 10 ⁻³	15.8	26	1.47	29.4	94
Kr	3.49 · 10 ⁻³	14.0	24	1.32	(22)	192
Xe	5.49 · 10 ⁻³	12.1	22	1.23	44	307
CO ₂	1.86 · 10 ⁻³	13.7	33	1.62	(34)	91
CH ₄	6.70 · 10 ⁻⁴	13.1	28	2.21	16	53
C_4H_{10}	2.42 · 10 ⁻³	10.8	23	1.86	(46)	195

July 20, 20;

Quelle: K. Kleinknecht, Detektoren für Teilchenstrahlung, B.G. Teubner, 1992

Signal formation

• One electron-ion pair. Signal induced by drift of charge in the electric field. Shape depends on release point. Electrons much faster than ions.

July 20, 2020

9

F.Forti, Particle Detectors 02

Transport effects

Many complex effects affect charge transport

- Recombination and electron attachment
 - Electronegative gases (O2, F, Cl) influences detection efficiency
- Diffusion
 - Influences special resolution
- Mobility
 - Influences the timing behavior
- Avalanche process via impact ionization
 - Primary electrons can produce secondary electrons and it is possible to create an avalanche
 - Multiplicate the collected charge \rightarrow gas gain

Charge multiplication

- If a thin wire is used as anode in a cylindrical counter, the field goes like 1/r
- Below a certain radius electrons gain enough energy between collisions to ionize other atoms.

Photon emission possible in multiplication \rightarrow secondary ionization.

Some form of quenching is necessary to prevent secondary avalanches

F.Forti, Particle Detectors 02

Signal in cylindrical wire chamber

The induced signal is by far dominated by the movement of the ions! M.Krammer

Gas amplification

- Ionization mode
 - Full charge collection
 - No multiplication, gain ≈ 1
- Proportional mode
 - Signal proportional to primary ionization
 - Secondary avalanches need quenches
 - gain $\approx 10^4 10^5$
- Limited proportional mode (streamer)
 - Strong photoemission
 - Requires strong quenching or pulsed HV
 - gain $\approx 10^{10}$
- Geiger mode
 - Massive photoemission
 - Full length of anode ire affected
 - Discharge stopped by HV cut

Multi-wire proportional chamber (MWPC)

Micro pattern gas detectors

• The concept of gas multiplication can be implemented in many different ways using high precision photolithographic techniques, without using wires.

Drift chamber

- An alternative way to obtain spatial information: measure the electron drift time.
 - Time measurement started by an external fast detector (eg scintillator)
 - Electrons drift to the anode (sense wire) in the field created by the cathodes (must be as uniform as possible)
 - The electron arrival stops the time measurement

Drift Chamber - spatial resolution

Resolution determined by accuracy of drift time measurement ...

Influenced by:

- $\begin{array}{l} \text{Diffusion} \; [\sigma_{\text{Diff.}} \sim \sqrt{x}] \\ \text{see above:} \; \sigma^2 \sim 2\text{Dt} = 2\text{Dx/v}_\text{D} \sim x \; \dots \end{array}$
- δ -electrons [σ_{δ} = const.]

independent of drift length; yields constant term in spatial resolution ...

Electronics [$\sigma_{\text{electronics}} = \text{const.}$]

contribution also independent of drift length ...

Primary ionization statistics $[\sigma_{prim} = 1/x]$

Spatial fluctuations of charge-carrier production result in large drift-path differences for particle trajectories close to the anode [minor influence for tracks far away from anode]

Resistive plate chambers (RPC)

- Ionization chamber operated in avalanche or streamer mode
- Gas gap typically 2mm
- Resistive electrodes made of phenolic-melaminic (bakelite) or glass.
- Signal induced on readout electrode

Space resolution ~mm Fast timing (~lns) Designed to cover large area

Semiconductor detectors

Semiconductor ionization detectors

- Basic principle is the same as the ionization chamber
- But in semiconductors at non-zero temperature charge carriers are present, competing with ionization charge.

Intrinsic carrier concentration

- Because of the small band gap in semiconductors, at room temperature electrons can be excited to the conduction band, leaving holes in the valence band. And then recombine with holes.
- At thermal equilibrium a balance between excitation-recombination is reached leading to the "intrinsic carrier concentration" $n_e=n_h=n_i=1.45\cdot 10^{10}cm^{-3}$

$$n_i = \sqrt{N_C N_V} \cdot \exp\left(-\frac{E_g}{2kT}\right) \propto T^{\frac{3}{2}} \cdot \exp\left(-\frac{E_g}{2kT}\right)$$

 N_C , N_V =density of states at the edge of the conduction and valence band

 Because of this intrinsic carrier if we polarize an intrinsic semiconductor a large current flows → cannot work as the ionization chamber

Properties of intrinsic semiconductors

	Si	Ge	GaAs [III-V Semiconductor]
E _{gap} [eV]	1.11	0.67	1.43
n _i @ 150 K [m ⁻³]	4.1·10 ⁶		1.8·10 ⁰
n _i @ 300 K [m ⁻³]	1.5·10 ¹⁶	2.4 · 10 ¹⁹	5.0·10 ¹³
me/me	0.43	0.60	0.065
mʰ/me	0.54	0.28	0.50
Energy/e-hole-pair [eV]	3.7 [†]	3.0 [†]	_

† at 77 K

Doping: control density of carriers

Junction

- At the interface on n-type and p-type semiconductor the different electron/hole density causes diffusion.
 - Electrons from the n-type recombine with holes from the p-type
- An electric field is created by the fixed ions that remain behind (space charge)
 - At equilibrium the drift current from the electric field balances the diffusion current in the opposite direction
- The zone without free carriers (and electric field) is called depletion zone

Depletion of sensor

- Applying an external reverse voltage one can extend the depletion zone
- The potential barrier between p and n is increased, and the current is very small (leakage current)

The depletion is zone is the sensitive volume of the detector since generated ionization charge can be collected using the electric field

Example of a typical p-n junction

Effective doping concentration $N_a = 10^{15}$ cm⁻³ in p+ region and $N_d = 10^{12}$ cm⁻³ in n bulk.

Without external voltage:

 $W_p = 0.02 \,\mu \text{m}$ $W_p = 23 \,\mu \text{m}$

Applying a reverse bias voltage of 100 V:

$$W_{p} = 0.4 \ \mu m$$

 $W_{n} = 363 \ \mu m$

Width of depletion zone in n bulk:

$$W \approx \sqrt{2\varepsilon_0 \varepsilon_r \mu \rho |V|}$$
 with $\rho = \frac{1}{e \mu N_{eff}}$ ρ ... External voltage
 ρ ... specific resistivity
 μ ... mobility of majority charge carriers
 N_{eff} ... effective doping concentration

The depletion voltage is the voltage at which the depletion zone extends through the full thickness

17

External valtage

Polarization

- To polarize the sensor one needs metallic contacts and a bias resistor.
- The signal can in general be extracted from both sides
- A MIP in 300µm of silicon releases 24000 e- ~ 4fC: very small charge.
- Note: the detector bulk can be either p or n-type Bias p⁺ dead layer n+ Need to make sure electric field does not cause breakdown 1 µm $[\rho = 10 \text{ k}\Omega \text{cm}; \text{N}_{\text{A}}]$ $E = \frac{U}{d} = \frac{100 \text{ V}}{300 \cdot 10^{-6} \text{ m}} \approx 3 \cdot 10^5 \frac{\text{V}}{\text{m}}$ Signal um [Safe. Breakdown limit at 10⁷ V/m] 300 µm Sensitive volume Metal contact 27 July 20, 2020 F.Forti, Particle Detectors 02

Strip detectors

- Using modern microfabrication technology developed for electronics (planar process) one can segment the junction readout electrode in various ways → position sensitive detectors
 - Readout pitch can be as small as $50 \mu m$
- Each electrode must have its own amplifier → need for miniaturized integrated circuits
- Signal to noise ratio requires careful optimization

 $50 - 500 \mu m$

Coupling and bias

- It is desirable that leakage current does NOT flow into amplifier → AC coupling of strips
 - Integrate capacitors along the strip
 - SiO_2/Si_3N_4 deposition (100-200 nm)
 - Issues with defects of oxide (pinholes)
 - Order of 30pF/cm
- To apply voltage to the substrate a bias resistor is required
 - Can also be integrated on the detector surface
 - Deposition of polycrystalline silicon
 - Sheet resistance of order 250 $k\Omega/\Box$ leading to a R~10 20 M Ω
 - Drawback: more fabrication complexity

Point resolution

- Segmented detectors provide space information on the point *x* of passage of the particle
 - The distance between strips is called pitch p
- Point resolution depends on the readout mode and on the angle. For perpendicular tracks.
- Threshold readout (digital yes/no):
 - One strip is over threshold at position x_1 .
 - Position estimator $x = x_1$
 - Flat probability between $x_1 \frac{p}{2}$ and $x_1 + \frac{p}{2}$.
 - Resolution $\sigma_x = \frac{p}{\sqrt{12}}$
- Charge readout (analog)
 - Signals h_1, h_2 on strips at positions x_1, x_2
 - Position estimator center of gravity $x = \frac{x_1h_1 + x_2h_2}{h_1 + h_2}$
 - Resolution $\sigma_{\chi} \propto \frac{p}{\text{signal/noise}}$

- Can take advantage of charge division through capacitive coupling

2-D detectors

- One needs to measure two coordinates of passage of a particle
- In principle can use two strips detectors with orthogonal orientation
 - Twice the material \rightarrow bad impact on multiple scattering
- Development of double-side strip detectors
 - Need special insulating structures between n type strips (ohmic contact side)

Schematics of a double sided micro-strip detector

- Same material as single sided, but 2D point
 - Ambiguity if more than particle crosses the detector: multiple combinations of the two views Used in Belle II experiment

Pixel detectors

- Electrodes can also be segmented in pixels
 - Pro: no ambiguity in point determination
 - Con: added complexity, huge number of channels
- Strong technology connection with digital cameras
- First development: Charged Coupled Devices (CCD)
 - Charged stored under metal gates, individually switchable. Slow readout
 - Pixel dimension down to $20 \mu m$

July 20, 2020

F.Forti, Particle Detectors 02

Flip-chip pixel detectors

- Sensor pixels are connected 1-to-1 to amplifier channels, organized with a matching geometry on the readout IC.
- Bump bonding technology: use soft material (like Indium) to perform vertical connection

L. Rossi, *Pixel Detectors Hybridisation*, Nucl. Instr. Meth. A **501**, 239 (2003)

DEPFETs

- fully depleted sensitive volume
 - fast signal rise time (~ns), small cluster size
- In-house fabrication at MPS Semiconductor Lab
 - Wafer scale devices possible
 - Thinning to (almost) any desired thickness
 - no stitching, 100% fill factor
- no charge transfer needed
 - faster read out
 - better radiation tolerance
- Charge collection in "off" state, read out on demand
 - potentially low power device
- internal amplification
 - charge-to-current conversion
 - r/o cap. independent of sensor thickness
 - Good S/N for thin devices $\square \sim \! 40 nA/\mu m$ for mip

Used in Belle II experiment

33

CMOS sensors

• Idea: use the CMOS Image Sensor (CIS) technology for particle detection. Electronics and sensor on the same substrate

CMOS radiation sensor

pixel capacitance $\approx 5 fF (@V_{bb} = -3 V)$

Very active development of many different structures

Scintillators

Scintillators

- Principle: released energy converted into light
 - Detection via photosensor for instance photomultipliers.
- Requirements
 - High efficiency for conversion of excitation energy
 - Transparency to allow transmission of light
 - Spectral range detectable by photosensors
 - Short decay time to allow fast response
- Material:
 - Solid or liquid. Typically transparent plastic plates
 - Doped with molecules that emit light (visible or UV) when excited through ionization energy loss. Can be organic or inorganic.
 - Rest of material must be transparent to that wavelength
 - Wavelength shifting technique to avoid re-absorption
- Typically 10k photons/MeV deposited

Inorganic crystals

- Materials:
 - Sodium iodide (NaI)
 - Cesium iodide (CsI)
 - Barium fluoride (BaF₂)
- Mechanism
 - Energy deposition by ionization
 - Energy transfer to impurities
 - Radiation of scintillation photons
- Different time constants
 - Fast: recombination from activation centers [ns ... µs]
 - Slow: recombination due to trapping [ms ... s]

Note: crystal is substantially transparent to the scintillation light

Energy bands in impurity activated crystal showing excitation, luminescence, quenching and trapping

Crystal pictures

Liquid Nobel Gases

- Materials:
 - Helium (He)
 - Liquid Argon (LAr)
 - Liquid Xenon (LXe)

- Decay time constant
 - Helium: $\tau_1 = 0.02 \mu s$, $\tau_2 = 3 \mu s$
 - Argon: $\tau_1 \leq 0.02 \mu s$

Note: also in this case material is transparent to the scintillation light

Properties of inorganic scintillators

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [µs]	Photons/MeV
Nal	3.7	1.78	303	0.06	8·10 ⁴
Nal(TI)	3.7	1.85	410	0.25	4 · 10 ⁴
CsI(TI)	4.5	1.80	565	1.0	1.1·10 ⁴
Bi ₄ Ge ₃ O ₁₂	7.1	2.15	480	0.30	2.8 · 10 ³
CsF	4.1	1.48	390	0.003	2 · 10 ³
LSO	7.4	1.82	420	0.04	1.4·10 ⁴
PbWO ₄	8.3	1.82	420	0.006	2·10 ²
LHe	0.1	1.02	390	0.01/1.6	2·10 ²
LAr	1.4	1.29*	150	0.005/0.86	4·10 ⁴
LXe	3.1	1.60*	150	0.003/0.02	4·10 ⁴

* at 170 nm

Organic scintillators

- Materials:
 - aromatic hydrocarbon compounds.
 - Naphtalene $[C_{10}H_8]$
 - Antracene $[C_{14}H_{10}]$
 - Stilbene $[C_{14}H_{12}]$
 - . . .
- Very fast
 - Decay times of O(ns)
 - Scintillation light arises from delocalized electrons in π -orbitals

. . .

Note: also in this case material is transparent to the scintillation light

of the C = C bond ...

Two p₇ orbitals

Properties of inorganic scintillator

Scintillator material	Density [g/cm ³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4.10 ³
Antracene	1.25	1.59	448	30	4 · 10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2·10 ⁴
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5·10 ²
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

* Nuclear Enterprises, U.K. ** Bicron Corporation, USA 43

Photon detection

- Emitted light must be converted into an electronic signal
- Principle: use photo-electric effect to convert photons to photo-electrons (p.e.)
- Requirement:
 - High photon detection efficiency (PDE), also called Quantum Efficiency: Q.E.=N_{\rm pe}/N_{\rm photons}
- Example of devices:

Photomultipliers (PMT) Micro Channel Plates (MCP) Photo Diodes (PD) HybridPhoto Diodes (HPD) Visible Light Photon Counters (VLPC) Silicon Photomultipliers (SiPM)

Photomultipliers

- Principle:
 - Electron emission from photocathode
 - Secondary emission from dynodes
 - Single dynode gain: 3-50
- Typical overall gain > 10^6
 - PMT can see single photons !

Micro Channel Plate

But: limited life time/rate capability

Avalanche and Hybrid Photo Diodes

- Avalanche Photo Diode (APD)
- Reverse voltage (100-500 V) leads to avalanche
- Gain 100-1000

- Hybrid Photo Diodes (HPD)
- Photocathode like in PMT
- Acceleration in vacuum of e-(10-20kV, super high vacuum)
- Silicon detector to measure e

Silicon Photomultipliers

- Principle:
 - Pixelized photo diodes operated in Geiger mode
 - Single pixel works as a binary device
 - Energy = #photons seen by summing over all pixels
- Features:
 - Granularity : 10³ pixels/mm2
 - Gain : 10^{6}
 - Bias voltage : < 100 V
 - Efficiency : ca. 30%
- Insensitive to magnetic field

Comparison of photo detectors

	PMT	APD	HPD	SiPM
Photon				
detection				
efficiency:				
blue	20%	50%	20%	12%
green - yel-	a few $\%$	60-70%	a few $\%$	15%
low				
red	$<\!1\%$	80%	$<\!1\%$	15%
Gain	$10^{6} - 10^{7}$	100-200	10^{3}	10^{6}
High voltage	1-2 kV	100-500 V	20 kV	$25 \mathrm{V}$
Operation in	$\operatorname{problematic}$	OK	OK	OK
the magnetic				
field				
Threshold	1 ph.e.	${\sim}10$ ph.e.	1 ph.e.	1 ph.e.
sensitivity				
$S/N \gg 1$				
Timing $/10$	${\sim}100~{\rm ps}$	a few ns	${\sim}100~{\rm ps}$	$30 \mathrm{\ ps}$
ph.e.				
Dynamic	$\sim 10^6$	large	large	$\sim 10^3 / \mathrm{mm}^2$
range				
Complexity	high (vac-	medium	very high	relatively
	uum, HV)	(low noise	(hybrid	low
		electronics)	technology,	
			very HV)	

Take away message

- Ionization charge can be readout with an electric field
- Gas, liquid, solid materials can be used, as long as charge can be collected
- Photons must be converted to electrical signal to be recorded.
- Detector technologies are many, and complex, taking advantage of often sophisticated chemical and physical mechanisms.

End of Part 02