JENNIFER2 SUMMER SCHOOL ON PARTICLE PHYSICS AND DETECTORS 20-27 6-15 July 2020 KEK, Tsukuba, Japan REMOTE

Particle Detectors 03

Francesco Forti, INFN and University, Pisa Jennifer2 Summer School 20-27 July 2020

Università di Pisa Dipartimento di Fisica "Enrico Fermi"

Outline

 $\mathbf{O}\mathbf{I}$

- Introduction
- A tour of particle-matter interactions
 - Heavy charged particles
 - Electron and positrons
 - Hadrons
 - Neutrinos
- Detector technologies
 - Gas ionization detectors
 - Semiconductor detectors
 - Scintillators and photodetectors
- Modern detector systems
 - Tracking/vertexing
 - Particle identification
 - Calorimetry
- Conclusion

03

02

Modern detectors @ accelerators

- Tracking:
 - Silicon detectors (pixel, strips)
 - Gas detectors (MPGD, drift, ...)
- Particle ID
 - Time of flight (scintillator)
 - Cherenkov radiator
- Calorimeters
 - Scintillating crystals/liquid
 - Sandwich heavy material (Pb, Fe) and detector
- Muon chamber
 - Absorber (Fe) and large area detectors

Collider detector scheme

- Cylindrical shape
- Exact structure depends on experiment
- Radius 1-10m
- Called 4π detectors because cover as much as possible of the solid angle

<u>A detector cross-section, showing particle paths</u>

CMS

ATLAS

BELLE II

Magnets

- A high magnetic field is essential for momentum measurement (0.5 4 T)
- Obtaining such a magnetic field in a large volume is very challenging and requires a superconducting magnet
- Solenoid (most experiments)
 - Large homogenous field inside
 - Opposite field in return yoke
 - Large material and cost
- Toroid (ATLAS)
 - Large field on large volume
 - Relatively low material
 - Non-uniform field
 - Complex structural design

Electronics, Trigger, Data acquisition

- Electronics: amplification and digitization of signals coming from the detectors
 - Essential to extract very tiny signals from a lot of noise
- Trigger: very fast decision logic to select events
 - Essential to extract interesting events out of the large number of background events
- Data acquisition: combine data from different subdetectors and transfer to permanent storage
 - Complex real time system to process and transfer large amounts of data
- Will not cover these topics for lack of time.
- Technologically very challenging

Tracking and vertexing

Tracking / vertexing

- Measure precisely the trajectory of charged particle
 - Determine momentum and sign of charge through curvature in magnetic field
- Extrapolate tracks to interaction point to determine:
 - primary vertex position (where the main interaction happened)
 - secondary vertices positions (where unstable particles decayed)

Important parameters for tracking

- Point resolution: the spatial resolution on measurement points
 - Range from a few μ m (pixels) to mm (gas detectors)
- Number of measurement points along the trajectory
 - Tradeoff between precision, material, cost, complexity
- Magnetic field
 - Necessary for momentum measurement. The higher the momentum, the higher magnetic field is needed
- Amount of material
 - Multiple scattering limits resolution,

Gas Tracking detectors

Tracking at fixed target experiments: Multi-layer MWPC or drift chamber

Tracking at collider experiments: cylindrical drift chamber

Drift chamber event • First fully reconstructed $B^0\overline{B^0}$ mixing event @ ARGUS at DESY, 1987

An event from Belle II's first evening, 2019

 $e^+e^- \rightarrow \gamma^* \rightarrow BB$

A candidate $e^+e^- \rightarrow B\overline{B}$

Backgrounds

Silicon tracking detectors

- Drift chambers provide a continuous gas volume with many measurement points obtained from the wires
- Silicon detector provide one measurement point per detector. Only few points because of cost and material (typical number for $300\mu m$ thick silicon is $0.3\% X_0$ per layer).
- Point resolution is in general better: $5 20 \mu m$
- Cylindrical arrangement around the interaction region

Technologies:

Inner layers: pixels

- Hybrid pixels, CCDs, DEPFETS Outer layers strips
- Single sided or double sided

Belle II Vertex Detector

Momentum resolution

• Curvature in magnetic field: measure sagitta of trajectory

Curvature measures transverse momentum p_t

$$p_t = eBR; p_t[GeV] = 0.3 B[T]R[m]$$

- To estimate resolution use sagitta s and path length L
- From geometry $s = \frac{L^2}{8R} = \frac{eBL^2}{8p_t} \rightarrow p_t = \frac{eBL^2}{8s} \rightarrow \frac{\sigma_{p_t}}{p_t} = \frac{\sigma_s}{s} = \frac{8p_t\sigma_s}{eBL^2}.$
- For N equally spaced points $\sigma_s = \frac{\sigma_x}{8} \sqrt{\frac{720}{N+5}}$ is independent of momentum, leading to $\frac{\sigma_{p_t}}{p_t} = const \frac{\sigma_x p_t}{BL^2}$
- In addition there is a multiple scattering contribution due to the total amount of material along the particle path

Momentum resolution - 2

• For tracks orthogonal to the magnetic field

$$\frac{\sigma_{p_t}}{p_t} = C_1 \frac{\sigma_x p_t}{BL^2} \bigoplus C_2 \frac{1}{B\sqrt{LX_0}}$$

- Improves quadratically with path length L
- Improves linearly with magnetic field
- Degrades linearly with transverse momentum
- Is proportional to point resolution

Secondary vertices

- Heavy flavor particles like D and B decay away from the primary interaction point, generating secondary vertices.
- The distance of closest approach of a particle to the primary vertex is called impact parameter and is connected with the particle decay length

Some examples

microstrips	CCD
25 μm (lettura 50 μm)	20 μm x 20 μm
R=5.25 cm, l=0.4% X ₀	R=2.35 cm, l=0.5% X ₀
R=6.3 cm, l=0.5% X ₀	R=2.80 cm, l=0.4% X ₀
R=10.7 cm, l=0.5% X ₀	R=4.83 cm, l=0.4% X ₀
8 µm	4.4 μm
s 20 μm	11 μm
65 μm×GeV	33 μm×GeV
	R=5.25 cm, l=0.4% X ₀ R=6.3 cm, l=0.5% X ₀ R=10.7 cm, l=0.5% X ₀ 8 μm 20 μm 65 μm×GeV

A.Andreazza

26

Collateral effects: interactions

- Vertices can also arise from undesirable interactions of particle in the detector material
- In this Belle II example 3 track vertices produce a kind of radiography of the detector material.

Particle Identification

Particle Identification

- Two major applications for particle identification:
 - Identification of beam particles (fixed target experiments)
 - Identification of decay products
- Assuming particle momentum is known from magnetic measurements, need second observable to identify particle type:

Velocity	Time of flight	$ au \propto 1/eta$	
	Cherenkov angle or threshold	$\cos \theta = 1/\beta n, \qquad \beta > 1/n$	
	Transition radiation	$\gamma > 1000$	
	Energy loss (Bethe-Bloch)	$dE/dx \propto 1/\beta^2$	
Total energy	Calorimeter	$E = m\gamma$	
Penetration	Instrumented absorber	μ^\pm have no radiation effects and no hadronic interactions	

Summary of PID methods

- Different methods for different particles and different momenta.
 - Need to combine different information into a likelihood estimator.
 - Indicate the separation of two mass hypotheses as "number of σ "
- Main discrimination tools:
 - e/π : match momentum to total energy electromagnetic calorimeter. E/p = 1 for fully absorbed electrons.
 - π/μ : penetration in instrumented absorber, μ penetrates much more
 - π/K , K/p Cherenkov angle measurement.
 - K_L/n : penetration and shape of shower in hadronic calorimeter/ instrumented absorber
 - TOF and dE/dx useful in the low β regime

Time of flight

- Measure signal time difference between two detectors with good time resolution (<100ps). $\beta = L/c\Delta t$
- For example
 - Scintillators + PMT/SiPM
 - Resistive plate chambers (RPCs)

July 20, 2020

Cherenkov angle

- Need a radiator in which $\beta > 1/n$
- Different technologies:
 - Threshold Cherenkov Counters (Many experiments)
 - RICH: Ring Imaging CHerenkov counter (Many experiments)
 - DIRC: Detector of Internally Reflected
 - Cherenkov radiation (Babar)
 - TOP: Time of Propagation Counter (Belle II)
- Photon detection is a crucial part of the system: tiny signal
 - PMT / MCP-PMT/ SiPM
 - Hybrid Photon Detectors

LHCb RICH system

Belle II Focusing Aerogel System

• Use slightly different n_1, n_2 to get more photons without blurring the image

- PMTs sensitive to magnetic field \rightarrow in collider detectors one must bring the light outside of the magnetic region preserving the angle information
- Use very well polished super-flat quartz bars and use internal reflection

Fig. 3. Schematic of the DIRC fused silica radiator bar and imaging region. July 20, 2020 F.Forti,

dE/dx method

- Use the low momentum part of the Bethe-Bloch curve where $\frac{dE}{dx} \propto \frac{z^2}{\beta^2} \ln(a\beta^2\gamma^2)$
- Fluctuations make the method difficult to use
- Can complements other methods

Calorimetry

- Eventually converted in heat \rightarrow calorimeter
- The medium is dense so the first particle interacts, producing secondary particles which undergo further interactions, producing a shower

Electromagnetic shower

Hadronic shower

Electromagnetic Component

Hadronic Component

Use of calorimetry

- Calorimetry is a widespread technique in particle physics:
 - Instrumented targets (e.g. neutrino experiments)
 - 4π detectors for collider experiments
 - Measure both charged and neutral particles
- Various detection mechanisms are used
 - Scintillation
 - Cherenkov radiation
 - Ionization
 - Phonons/thermal effects
- Energy resolution
 - Stochastic process, number of secondaries is proportional to E, so $\sigma_E/E \propto 1/\sqrt{E}$, to be compared with $\sigma_p/p \propto p$
 - At high energy calorimetry is necessary

Electromagnetic shower

Dominant processes at high energies (E > few MeV) : Photons : Pair production Electrons : Brei

$$\begin{split} \sigma_{\text{pair}} &\approx \frac{7}{9} \left(4 \,\alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right) \\ &= \frac{7}{9} \frac{A}{N_A X_0} \quad \text{[X_0: radiation length]}_{\text{[in cm or g/cm2]}} \end{split}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \, \frac{N_A}{A} \cdot \sigma_{\rm pair} = \frac{7}{9} \frac{\rho}{X_0}$$

 X_0 = radiation length in [g/cm²]

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln\frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\bigstar E = E_0 e^{-x/X_0}$$

After passage of one X_0 electron has only (1/e)th of its primary energy ...

Development of EM shower

- Transverse
 - Main contribution from low energy electrons at $E \approx E_c$: $< \theta > \approx 21 MeV/E_c$
 - With an approximate range X_0 the lateral spread (Molière radius) is

Useful numbers for back of the envelope calculations

Droblom

Radiation length:	$X_0 = \frac{180A}{Z^2} \frac{\mathrm{g}}{\mathrm{cm}^2}$	Problem. Calculate how much Pb, Fe or Cu is needed to stop a 10 GeV electron. Pb : Z=82, A=207, ρ =11.34 g/cm ³ Fe : Z=26, A=56, ρ =7.87 g/cm ³ Cu : Z=29, A=63, ρ =8, 22 g/cm ³
Critical energy: [Attention: Definition of Rossi used]	$E_c = \frac{550 \text{ MeV}}{Z}$	00 . 2 = 20 , A = 00, p = 0.02 g/011
Shower maximum:	$t_{\max} = \ln \frac{E}{E_c} - \begin{cases} 1.\\ 0. \end{cases}$	0 e⁻ induced shower5 γ induced shower
Longitudinal energy containment:	$L(95\%) = t_{\rm max} + 0.08$	$3Z + 9.6 [X_0]$
Transverse Energy containment:	$R(90\%) = R_M$ $R(95\%) = 2R_M$	

Classes of calorimeters

Homogeneous calorimeters

- A single medium serves as both absorber and detector:
 - scintillating crystals (CsI, BGO, PbWO₄, LYSO, ...), lead glass, or Liquid Xe, LKr.
- Collect all energy if deep enough: good resolution
- Volume and depth limited by cost and fabrication issues

Sampling calorimeters

- Layers of passive absorber (Pb, Cu) alternate with active detector layers (Scintillator, LAr, Silicon)
- Scalable: can be made very thick; relatively cheap
- Collect only fraction of energy limits resolution
 Passive absorber

Energy resolution

- Energy is proportional to number of particles. If all are counted: $E \propto N, \sigma \propto \sqrt{N} \propto \sqrt{E} \rightarrow \sigma/E \propto 1/\sqrt{E}$
- In practice there are more terms in resolution:
- a: Stochastic term
 - Statistical shower fluctuations
 - Sampling fluctuation
 - Signal quantum fluctuations (eg photoelectron statistics)
- b: Constant term
 - Inhomogeneities and imperfections (hardware, calibration, dimensional variations
 - Non-linearity of readout electronics
 - Longitudinal containment fluctuations (leakage can be $\propto E^{-1/4}$)
 - Dead material in front or within the calorimeter
- *c*: Noise term
 - Readout electronics noise
 - Radio-activity, pile-up (energy coming from other events)

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

Homogeneous calorimeters energy resolution

- Assume W is the mean energy needed to produce a 'signal quantum', for instance an electron-ion pair or a photon
- The number of 'quanta' $\langle N \rangle = E/W$ will be Poisson distributed with $\sigma_N = 1/\sqrt{\langle N \rangle}$ leading to $\frac{\sigma_E}{E} = \frac{1}{\sqrt{N}} = \sqrt{\frac{W}{E}} \rightarrow$ the smaller W, the better the energy resolution
- If there is correlation in the production of signal quanta, the fluctuations are reduced
 - This is called the "Fano factor" F < 1 leading to $\frac{\sigma_E}{\sigma_E} = \sqrt{\frac{FW}{FW}}$

$$\overline{E} = \sqrt{E}$$

• For instance for gamma spectroscopy Ge(Li) detectors have F=0.1 leading to a stochastic term $\frac{\sigma_E}{E} = 1.7\%/\sqrt{E(keV)}$

Material	W (eV)
Ge	2.9
Si	3.6
Gas	30
Plastic Scintillator	100

Sampling calorimeter resolution

- Main contribution: sampling fluctuations, from fluctuations in the number of charged particles n_{ch} crossing active layers.
- n_{ch} increases linearly with energy and the inverse of the thickness t of the absorbing layer: $n_{ch} \propto E/t$
- For uncorrelated samples the stochastic term is

• Finer sampling results in better resolution. In practice reaching the same resolution of homogenous calorimeters for low energy is impractical, but sampling calorimeters dominate at high energy.

M. Krammer

* Design values

Hadronic calorimeters

- Hadrons also produce showers, with a similar mechanism, but also differences:
 - 1. Hard interaction of hadron with nucleus λ_{int}
 - 2. Spallation: intra-nuclear cascade with possibility of nuclear excitation
 - 3. Secondary interactions
 - Electromagnetic and hadronic components give different responses
 - Some energy can be lost in nuclear excitations

	λ_{int} [cm]	X ₀ [cm]
Szint.	79.4	42.2
LAr	83.7	14.0
Fe	16.8	1.76
Pb	17.1	0.56
U	10.5	0.32
Q	38.1	18.8

F.Forti, Particle Detectors 01

Hadronic vs. electromagnetic

- Comparison of simulated showers in atmosphere for protons and photons
- Hadronic showers much more difficult to model and understand
- Great effort in getting the same response from the em and hadronic components (compensation).

Take away message

- Modern detectors measure as much as possible
- Tracking for momentum and position, reconstruct vertices
 - Gas or silicon detectors
- Particle identification essential to properly reconstruct the decay chain
 - TOF, Cherenkov light, dE/dx as a complement
- Calorimetry measures total energy
 - The only way of measuring neutrals

50

Galileo Galilei
Measure what can be measured, and make measurable what cannot be measured.

Freeman Dyson

- The effect of a concept-driven revolution is to explain old things in new ways.
- The effect of a tool-driven revolution is to discover new things that have to be explained.

Conclusion

Detectors are our eyes. We need to use all the possible technologies and tools to perform the best measurement we can.