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Modern detectors @ accelerators

* Tracking:
. ey . . Particl
Silicon detectors (pixel, strips) . ;;’nfi’;caﬁon
* Gas detectors (MPGD, drift, ...)

 Particle ID

Tracking \ Electromagnetic Hadron Muon
chamber calorimeter  calorimeter charmber

« Time of flight (scintillator) photons
 Cherenkov radiator ot
» Calorimeters —

« Scintillating crystals/liquid muons
 Sandwich heavy material

+ mit
(Pb, Fe) and detector K*,7%, p
* Muon chamber KO. n
« Absorber (Fe) and large area

detectors Innerrost Layer... P» ...Qutermost Layer
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Collider detector scheme

 Cylindrical shape

* Exact structure
depends on
experiment

* Radius 1-10m

e Called 4m detectors
because cover as
much as possible of
the solid angle
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Superconducting
Solenoid

Iron return yoke interspersed
with Muon chambers
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BELLE II

K. and muon detector:
Resistive Plate Counter (barrel outer layers)
intillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: .‘
Csl(Tl), waveform sampl

tification
agation counter (barrel)

electron (7GeV)

Beryllium beam pipe

chm diameter

Vertex Detector
2 layers DEPFET + 4

positron (4GeV)

He(50%):C2Hs(50%), S
lever arm, fast electronics
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Magnets

« A high magnetic field is essential for momentum measurement (0.5 -
4T)

* Obtaining such a magnetic field in a large volume is very challenging
and requires a superconducting magnet
« Solenoid (most experiments) | Solenoid
* Large homogenous field inside
* Opposite field in return yoke
* Large material and cost

e Toroid (ATLAS)
* Large field on large volume
* Relatively low material
* Non-uniform field
 Complex structural design

-

Toroid

Im:-)gnet
coil

magnet
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Electronics, Trigger, Data acquisition

« Electronics: amplification and digitization of signals
coming from the detectors

« Essential to extract very tiny signals from a lot of noise

» Trigger: very fast decision logic to select events

» Essential to extract interesting events out of the large number of
background events

» Data acquisition: combine data from different sub-
detectors and transfer to permanent storage

 Complex real time system to process and transfer large amounts
of data

« Will not cover these topics for lack of time.
* Technologically very challenging
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Tracking and vertexing



Tracking / vertexing

* Measure precisely the trajectory of charged particle
 Determine momentum and sign of charge through curvature in
magnetic field
» Extrapolate tracks to interaction point to determine:
* primary vertex position (where the main interaction happened)
* secondary vertices positions (where unstable particles decayed)

Discovery of top quark

! K ents

t
¢ et ) xt ; S,
~ 5 ] s g \ /
[ .
T W'.-/ V !
Boost le——)p ) —>! 5 | e N st ') 3

I
~130um a Belle IT ut " \ s
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Important parameters for tracking

* Point resolution: the spatial resolution on measurement
points
* Range from a few pm (pixels) to mm (gas detectors)

 Number of measurement points along the trajectory
» Tradeoff between precision, material, cost, complexity

* Magnetic field

* Necessary for momentum measurement. The higher the
momentum, the higher magnetic field is needed

« Amount of material
 Multiple scattering limits resolution,
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Gas Tracking detectors

Tracking at fixed target experiments:
Multi-layer MWPC or drift chamber

Tracking at collider experiments:
cylindrical drift chamber

XXM X % x x x
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Drift chamber event

- First fully reconstructed B°B
mixing event @ ARGUS at
DESY, 1987

B’ =D u'v, D" —xD.,D —K'x
2)B) — D, w}v,, D;” = a’D", D™ — K}m,x;
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An event from Belle IT’s first evening, 2019
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A candidate ete™ —» BB
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Backgrounds
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Silicon tracking detectors

* Drift chambers provide a continuous gas volume with many measurement points
obtained from the wires

» Silicon detector provide one measurement point per detector. Only few points
because of cost and material (typical number for 300um thick silicon is 0.3%X, per
layer).

* Point resolution is in general better: 5 — 20um
* Cylindrical arrangement around the interaction region

Belle II SVD example
Technologies: S Xamp

Inner layers: pixels

 Hybrid pixels, CCDs, DEPFETS
Outer layers strips

e Single sided or double sided
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\\ W' pixel size: 100 ym x 150 um

Barrel Pixel: Forward Pixel:
3 barrel layers at rof 4.3, 7.3, 10.4 cm 4 disks at z of +35.5 and +46.5 cm
11520 chips (48 million pixels) 4320 chips (18 million pixels)

Modules dilted by 20° for better
charge sharing
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Pixel Detector



CMS Inner Bartel
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Belle II Vertex Detector

oooooooooooo
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Momentum resolution

* Curvature in magnetic field: measure sagitta of trajectory

Curvature measures

= ,s“— — \‘A i

- - N particle track transverse momentum p;
R: bending radius
e p: = eBR; p:[GeV] = 0.3 B[T]R[m]
R
B
* To estimate resolution use sagitta s and path length L
_L> _ eBIL? __eBL? Op, os _ 8pto;
From geometry s = SR 8n, P =g 7 e — s~ B2

« For N equally spaced points g, = Zx /1\%2; is independent of momentum, leading to

8
o o
Lt — const 2Pt
Pt BL

* In addition there is a multiple scattering contribution due to the total amount of
material along the particle path
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Momentum resolution - 2

* For tracks orthogonal to the magnetic field

% O-xpt @ C 1
pe  BL2Y "’p X,

* Improves quadratically with path length L

* Improves linearly with magnetic field

* Degrades linearly with transverse momentum
 Is proportional to point resolution

July 20, 2020 F.Forti, Particle Detectors O1
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Secondary vertices

* Heavy flavor particles like D and B decay away from the
primary interaction point, generating secondary vertices.

* The distance of closest approach of a particle to the
primary vertex is called impact parameter and is
connected with the particle decay length

For relativistic particles d = Lsiny = 0(yfct) - 0(y 1) = 0(c7)

1L=dec1:qay and % = % - impact parameter resolution is essential
engt Determined by: point resolution, distance, multiple scattering
Y

Example: two

mpact distance x4, x,
parameter from primary
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Some examples

DELPHI SLD

detector type microstrips CCcD
pitch 25 um (lettura 50 um) 20 um x 20 um
beam pipe R=5.25 cm, 1=0.4% X, R=2.35 cm, 1=0.5% X,
first detector layer R=6.3 cm, 1=0.5% X, R=2.80 cm, 1=0.4% X,
last detector layer R=10.7 cm, 1=0.5% X, R=4.83 cm, [=0.4% X,
point resolution 8 um 4.4 ym
Otracking 20 um 11 um
Oms 65 umxGeV 33 umxGeV

_xex co @I om0, = /ER?HZ.

o, = %% o, w— 04 = Oracking psin®2 9 d 0 A.Andreazza,

July 20, 2020 F.Forti, Particle Detectors 01 26



Collateral effects: interactions

« Vertices can also arise Jgrouplbelie2/dat

. Global tag: data |
from undesirable Bxp7.Exp8 4
interactions of particle in
the detector material 2

e In this Belle II example 3

track vertices produce a 0
kind of radiography of the
detector material. 2
-4
3tracksvertices|

aprod/Data/release-03-02-02/DB00000654/proc9/
-reprocessing_proc9 .
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Particle Identification

 Two major applications for particle identification:
» Identification of beam particles (fixed target experiments)
» Identification of decay products

* Assuming particle momentum is known from magnetic
measurements, need second observable to identify particle type:

Time of flight Tx1/p

Cherenkov angle or threshold cosf =1/fn, B>1/n
Velocity

Transition radiation y > 1000

Energy loss (Bethe-Bloch) dE /dx x 1/
Total energy Calorimeter E=my

i . .

Penetration Instrumented absorber P SO MO RO IO Gl SRS £

hadronic interactions
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Summary of PID methods

» Different methods for different particles and different
momenta.
 Need to combine different information into a likelihood estimator.

* Indicate the separation of two mass hypotheses as “number of ¢”

 Main discrimination tools:

* ¢/m: match momentum to total energy electromagnetic
calorimeter. E/p = 1 for fully absorbed electrons.

* /u: penetration in instrumented absorber, u penetrates much
more

* /K, K/p Cherenkov angle measurement.

* K; /n: penetration and shape of shower in hadronic calorimeter/
instrumented absorber

 TOF and dE/dx useful in the low  regime

July 20, 2020 F.Forti, Particle Detectors 01 30



Time of flight

* Measure signal time difference between two detectors with good time

resolution (<100ps). f = L/cAt

* For example
e Scintillators + PMT/SiPM

» Resistive plate chambers (RPCs)

July 20, 2020
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Cherenkov angle

* Need a radiator in which f > 1/n

» Different technologies:
* Threshold Cherenkov Counters (Many experiments)
 RICH: Ring Imaging CHerenkov counter (Many experiments)
* DIRC: Detector of Internally Reflected
* Cherenkov radiation (Babar)

» TOP: Time of Propagation @ ’ . |
Counter (Belle II) T M V== P =
. : ‘ 7
* Photon detection is a crucial ” \\< g _ |
part of the system: tiny signal W cosu, = B
« PMT / MCP-PMT/ SiPM Qe

* Hybrid Photon Detectors

°
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LHCDb RICH system

Determination of 8 from ring radius:

= 1 R, : radius of
I’lCOS(2r/R ) spherical mirror
Different radiators

Complex mirror sustem to focus
light on photon detectors

small rings: C,F 4,
large rings: Aerogel

WG f sl

LHCb
RICH

-
-—

10 /||

photon
detectors

' (n(A ’2"20@‘30

spherical
|__—mirror

beam pipe
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Belle II Focusing Aerogel System

» Use slightly different n,,n, to get more photons without
blurring the image

aerogel n < n, photon detectors
| Cherenkov photons

charged particle
g P>
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DIRC / TOP

+ PMTs sensitive to magnetic field - in collider detectors one must bring the light outside
of the magnetic region preserving the angle information

* Use very well polished super-flat quartz bars and use internal reflection

TOP @ BELLE II: Time Of Propagation counter
Use also the time difference due to photons
different optical paths for different angles

Side view of crystal

/ B o >
crystal 4

DIRC @ BABAR : Detector of Internally Reflected
Cherenkov radiation PMT + Base

10,752 PMT's

Purified Water

17.25 mm Thickness
(35.00 mm Width)

\ /— Bar Box /
Trapk /,’ Bar/mirror width
Trajectory Wedge 450 mm
. \
v/ferror by Pt
Bar ‘.M '
* = Window Prism L h
rism lengt
‘ ‘ 100 mm "= Bar length 2600 mm
2x1250mm
411/ 49m /1/ 117 m +100mm mirror

3
\ Bar thickness 20mm
Prism width 456 mm

{ 4 x 1.225m Bars
MCP-PMT width 448 mM" prism height 51mm

glued end-to-end

Fig. 3. Schematic of the DIRC fused silica radiator bar and imaging region.
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dE/dx method

2
« Use the low momentum part of the Bethe-Bloch curve where % x ;—Zln(aﬁzyz)
* Fluctuations make the method difficult to use

» Can complements other methods

July 20, 2020
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Calorimetry

« Total absorption of a particle: destructive Shouerotiseconcayiparione
measurement of total energy

« Eventually converted in heat - calorimeter

Incoming particle

* The medium is dense so the first particle
interacts, producing secondary particles which
undergo further interactions, producing a shower

Electromagnetic shower Hadronic shower
A Rwm
Y e :
- P | Electromagnetic
L. | == C,C e Component
=1

J'Eo - i
n P
\v ________ J_E-
S - e Hadronic
A LT
n A

I I Heavy fragment Component

A LI

- s
. 6 X Interaction length

Rad lengths
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Use of calorimetry

« Calorimetry is a widespread technique in particle physics:
* Instrumented targets (e.g. neutrino experiments)
* 41 detectors for collider experiments
 Measure both charged and neutral particles

e Various detection mechanisms are used |
e Scintillation Ox /E
e Cherenkov radiation

™

tracker

v ‘ Al i L “
hadr. calorimeter

Lg

lo} clektromagn. Hadron—Kal.
» Ionization p/P i e
* Phonons/thermal effects \\
. 0.1¢
* Energy resolution Pb—(jlus\
* Stochastic process, number of secondaries :

is proportional to E, so oz /E « 1//E, to be

compared with o,,/p « p w

* At high energy calorimetry is necessary

0.01

0.1 | 10
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Electromagnetic shower

Dominant processes at high energies (E > few MeV) :

Photons : Pair production

Opair & g (4 on"gZ2 In @)

73
= Z A [Xo: radiation length]
9 NaXo fn cm or g/om?]
Absorption
coefficient:
— | T
"L - - p A pair — g XO

X, = radiation length in [g/cm?]
A

4aN ,Z’r’ In

Xy = 183

1/3

July 20, 2020

Electrons : Bremsstrahlung

dF Z2
—4aN, —
dr A AT

183

&
3
> E = Ege~ /X0

After passage of one Xp electron

has only (1/e)™ of its primary energy ...

li.e. 37%)

T Y
— of Pan
6
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Development of EM shower

* Transverse
e Main contribution from low energy electrons at
E~E..<60>=21MeV/E,
 With an approximate range X, the lateral spread

(Moliére radius) is
21MeV 7A

Ry ~ ———Xo = —
E Cc Z Depth
pth [Xo]
° Longitudinal 0 5 110 1'5 20 2'5 30
& L . Energy deposit of electrons as a function of depthina -
£ / o 1GeV block of copper; integrals normalized to same value
S 10 » \o [EGS4" calculation]
§- / L\ 10 GeV Depth of shower maximum increases |
g 8 o R logarithmically with energy
g [\ ke
o . X/ o %100 GeV tmax < In(Eo/E.)
'g 6 / / Xﬂ*« 1
g / \ _,- -\ \ “J TeV
w 4 / \.

A Ax a
. / ] i c\ .\ \; N\, .,

! ./ / /‘/ O\ '\.\.\\ \\\‘

L Ny i
'/'/// / Mg e G P .
0 o «‘/‘ %‘O‘“-o—nmm ““-bn-u
0 10 20 30 40 50
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Useful numbers for back of the envelope calculations

Radiation length:

Critical energy:
[Attention: Definition of Rossi used]

Shower maximum:

Longitudinal
energy containment:

Transverse

Energy containment:

July 20, 2020

Problem:
Calculate how much Pb, Fe or Cu
180A g is needed to stop a 10 GeV electron.
XO — Z2 cm2 Pb : Z=82,A=207, p=11.34 g/cm?
Fe : Z=26,A=56, p=7.87 g/cm?
Cu: Z=29, A=63, p=8.92 g/cm?®
550 MeV
E,="—""
Z
E 1.0 e induced shower
t =In— — :
ax E. 0.5 yinduced shower

L(95%) = tmax & 2 008Z . 96 [X()]

R(90%) = Ry
R(95%) = 2Ry
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Classes of calorimeters

Homogeneous calorimeters

* A single medium serves as both absorber
and detector:
* scintillating crystals (Csl, BGO, POWQ,,
LYSO, ...), lead glass, or Liquid Xe, LKT.

* Collect all energy if deep enough: good
resolution

* Volume and depth limited by cost and
fabrication issues

2

detectors

Sampling calorimeters

. La,%zers of passive absorber (Pb, Cu) alternate
with active detector layers (Scintillator, LAr,
Silicon)

* Scalable: can be made very thick; relatively
cheap

* Collect only fraction of energy limits
resolution

Passive absorber
1 l Shower of secondary particles
Incoming particle
Absorber Scintillator
: Light guide T T

Detectors

Photomultiplier
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Energy resolution

Energy is proportional to number of particles.
If all are counted: E « N, 0 « ?f\?oc E-o/E x1/VE

In practice there are more terms in resolution:

o
a: Stochastic term E
» Statistical shower fluctuations
* Sampling fluctuation
« Signal quantum fluctuations (eg photoelectron statistics)

b : Constant term
« Inhomogeneities and imperfections (hardware, calibration, dimensional variations
* Non-linearity of readout electronics
 Longitudinal containment fluctuations (leakage can be « E~1/4)
* Dead material in front or within the calorimeter

¢: Noise term
* Readout electronics noise
* Radio-activity, pile-up (energy coming from other events)

July 20, 2020 F.Forti, Particle Detectors 01 43



Homogeneous calorimeters energy resolution

« Assume W is the mean energy needed to produce a ‘signal quantum’,
for instance an electron-ion pair or a photon

* The number of ‘quanta’ (N) = E/W will be Poisson distributed with

. 1 w
oy = 1/./(N) leading to GE—E = —= |- > the smaller W, the better the
energy resolution

« If there is correlation in the production of Material W (eV)
signal quanta, the fluctuations are reduced Ge 599
» This is called the “Fano factor” F < 1 leading to )
Si 3.6
9% _ W
E A\ E Gas 30
 For instance for gamma spectroscopy Ge(Li) Plastic 100
detectors have F=0.1 leading to a stochastic term Scintillator

% = 1.7%/JE (keV)
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Sampling calorimeter resolution

 Main contribution: sampling fluctuations, from
fluctuations in the number of charged particles n.,
crossing active layers.

* n., increases linearly with energy and the inverse of the
thickness t of the absorbing layer: n., < E/t

 For uncorrelated samples the stochastic term is
Og 1 NG

X 04
E V1ch \/E
* Finer sampling results in better resolution. In practice
reaching the same resolution of homogenous calorimeters
for low energy is impractical, but sampling calorimeters
dominate at high energy.
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Some example EM
calorimeters

mia

% T T

'\ éampling Pi(alorimeto%r

FEr -

; : N :
: : \ N :
\ ™
NA48 Liquid Kr 4.8%NE ® 0.22% : \\ L« 0.01VE ]
BELLE Csl(T) 0.8%NE & 1.3% 1073 O SR °‘ 0.01E \‘ i \ \n i
CMS PbWO, 2.7%NE ® 0.55%* 0.01 0.1 1 10 100
C.Niebuhr E(GeV)
Sampling
calorimeters:
UA1 Scintillator 15 Pb 1.2 15%ME
SLD liquid Ar 2.75 Pb 2.0 8%MNE
DELPHI | Ar+20% CH, 8 Pb 3.2 16%/E
ALEPH Si 0.2 w 7.0 25%ME
ATLAS liquid Ar Pb 10%NE @ 0.7%*
LHCb Scintillator Fe 10%NE @ 1.5%*
M. Krammer * Design values
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Hadronic calorimeters

 Hadrons also produce showers, with a similar mechanism, but also

differences:
« 1. Hard interaction of hadron with nucleus - 4;,,;

2. Spallation: intra-nuclear cascade with
possibility of nuclear excitation

3. Secondary interactions

Electromagnetic and hadronic
components give different responses

Some energy can be lost in nuclear excitations

Heavy Nucleus (e.g. U)

n
v

Intranuclear cascade

(Spallation 1022 ) Intranuclear cascade

(Spallation 1022 g)
J

ascade N
Internuclear cascade

July 20, 2020 F.Forti, Particle Detectors 01

Am [cm] | Xo [cm]
Szint. 79.4 42.2
LAr 83.7 14.0
Fe 16.8 1.76
Pb WA 0.56
U 10.5 0.32
C 38.1 18.8




Hadronic vs. electromagnetic

 Comparison of
simulated showers in
atmosphere for
protons and photons

« Hadronic showers
much more difficult
to model and
understand

e Great effort in getting
the same response
from the em and
hadronic components
(compensation).

July 20, 2020

altitude above sea level [km]

20

15

10

I

250 GeV
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photon

lateral shower width [km]
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Simulated air showers



Take away message

 Modern detectors measure as much as possible

* Tracking for momentum and position, reconstruct vertices
* Gas or silicon detectors

» Particle identification essential to properly reconstruct
the decay chain

 TOF, Cherenkov light, dE/dx as a complement

* Calorimetry measures total energy
* The only way of measuring neutrals
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Conclusion

Detectors are our eyes. We need to use all the possible
technologies and tools to perform the best measurement we
can.

Galileo Galilei

* Measure what can be measured, and make measurable what
cannot be measured.

Freeman Dyson

* The effect of a concept-driven revolution is to explain old
things in new ways.

* The effect of a tool-driven revolution is to discover new
things that have to be explained.

May 13,2019 F.Forti, Technological Challenges 50



