
Statistics for 
Particle Physics



Who am I?
๏ I work on T2K, DUNE, and 

LZ 

๏ Interested in analysis 
challenges of statistics 

๏ Really love onigiri and onsen 

๏ email: 
asher.kaboth@rhul.ac.uk
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Outline
๏ Hour 1 

๏ Review of Probability and  Basic Terms 
๏ Frequentist vs Bayesian Statistics 
๏ Point Estimates 

๏ Hour 2 
๏ Hypothesis Testing 
๏ Limit Setting 
๏ Multivariate Techniques
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What are we doing here?
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We have a nice theory and a nice experiment

🤝
What do they tell us about our natural world?



Dealing with Uncertainty
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In particle physics there are various elements 
of uncertainty:  

๏ theory is not deterministic (quantum 
mechanics) 

๏ random measurement errors (present even 
without quantum effects)  

๏ things we could know in principle but don’t 
(e.g. from limitations of cost, time,…) 

We can quantify the uncertainty using 
PROBABILITY  



Tools
๏ ROOT is the most popular plotting 

tool in particle physics 

๏ RooStats neatly packages many of 
the things we’ll talk about today 

๏ Many experiments and analyzers 
are shifting to Python-based 
analysis
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Probability
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Frequentist conception: A is the outcome of a repeatable experiment

Subjective conception/degree of belief: you would make 
a fair bet on outcome A

Both conceptions obey the Kolmogorov axioms



Bayes’s Theorem
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and

equal

Therefore: 

P (D) = 0.001

P (D̄) = 0.999

P (+|D) = 0.98

P (�|D) = 0.02

P (+|D̄) = 0.03

P (�|D̄) = 0.97

Suppose there is a disease 
and a test with these 

probabilities. What is ?P (D|+)

P (D|+) =
P (+|D)P (D)

P (+|D)P (D) + P (+|D̄)P (D̄)
= 0.032



Frequentist Statistics
๏ Frequentist statistics is concerned with outcomes 

of repeated observations (real or hypothetical) 

๏ Probabilities such as P(CP violation exists) are 0 
or 1, but we don’t know which 

๏ The preferred theories (models, hypotheses, ...) 
are those for which our observations would be 
considered ‘usual’. 
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Bayesian Statistics

๏ Bayesian statistics uses subjective probabilities for 
hypotheses 

๏ No prescriptions for priors—informed by knowledge, 
subjective judgement, and computational feasibility
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Probability Density Functions
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A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x

P (x 2 [x, x+ dx]) = f(x)dx
Z 1

�1
f(x)dx = 1

Probability Density 
Function

If the variable is discrete

P (xi) = pi

X

i

pi = 1

Probability Mass 
Function



More on PDFs
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Joint PDF f(x1, x2, ..., xn) = f(~x)

Marginalized 
PDF

f1(x1) =

Z
f(x1, x2, ..., xn)dx2dx3...dxn

Conditional 
PDF

g(x1|x2) =
f(x1, x2)

f2(x2)



Cumulative Distribution Function
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pdf cdf

Z x

�1
f(x0)dx0 ⌘ F (x)



Common PDFs/PMFs
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Gaussian Poisson

Breit-Wigner

Uniform

χ2 
dof=4

Exponential



Means, Covariance, and Correlation
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V [x] = E[x2]� (E[x])2 = �2

E[x] =

Z
xf(x)dx = µ

The expectation value, or mean, of a PDF is

The variance is 



Means, Covariance, and Correlation
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cov[x, y] = E[xy] = E[(x� µx)(y � µy)]

⇢xy =
cov[x, y]

�x�y

The covariance of two variables in a joint pdf is:

The related correlation is: 



Comparing Data to Theory

๏ We want to know the probability 
that some set of data comes from 
some model—the probability of 
data given a model 

๏ This is called the likelihood 

๏ The model can depend on some 
vector of parameters, θ  

๏ Often use the negative log of the 
likelihood, as this can be easier 
to compute, and has some useful 
properties
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Concept

L(D|M(~✓))



Comparing Data to Theory

๏ Often, we bin data 
into histograms  

๏ Usually (but not 
always!) we can 
assume that the 
number of events in 
a bin is poisson 
distributed
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Histogram

�i =

Z bi+1

bi

f(x)dx

L =
Y

i

�ni
i e��i

ni!

� lnL =
X

i

�i � ni ln�i + lnni!



Comparing Data to Theory

๏ Sometimes, we can get 
more information out 
of our experiment 
without binning 

๏ If the model predicts a 
total number of events, 
we have to include an 
extended poisson term
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Unbinned

L =
NY

j

f(xj)⇥
⇤Ne�⇤

N !

Extended Term



Comparing Data to Theory
๏ Sometimes we have 

data points with 
associated errors, 
which we assume are 
Gaussian 

๏ In this case, we use 
the method of least 
squares 

๏ This may look familiar 
to you as “the” χ2
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Method of Least Squares



Example
๏ Model is a decaying 

exponential that 
predicts 20 events 
with a decay 
constant of -0.5 
(e-0.5x) 

๏ One example 
possible data set 
from this model, 
N=17, -lnL=0.703
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Example

๏ The same data, but 
in 5 unequal bins  

๏ Orange shows the 
model prediction, 
black shows the 
data 

๏ -lnL=2.09876

22



Parameter Estimation
๏ We have a model, M, with some 

parameters θ  

๏ We would like to estimate what 
the value of these parameters are 

๏ We also what to know what the 
range of possible values is
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Parameter Estimation
๏ Our ideal estimate would be unbiased 

and have a small variance 

๏ Generally these goals are in tension 

๏ The usual (frequentist) tool is a Maximum 
Likelihood Estimator 

๏ If we’re close to the true value of a 
parameter, then we have a high 
probability to get the data we observe
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Parameter Estimation
๏ In practice, typically the -lnL is 

minimized, rather than L 
maximized 

๏ The usual tool for this is MINUIT or 
another gradient descent algorithm  

๏ We denote the values of the model 

parameters at the minimum as  

๏ The exponential has an analytic 
solution—the mean is -1/constant 

๏ In this case we get the exact 
answer!

~̂✓
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-0.357



Parameter Estimation
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We’d also like to estimate the uncertainty on our parameters

Expand lnL around the minimum

change θ away from θ until -ln L increases by 1/2 

� ln(L) = � ln(L(✓̂))� @L
@✓

����
✓=✓̂

(✓ � ✓̂)� 1

2!

@2L
@✓2

����
✓=✓̂

(✓ � ✓̂)2
0

� ln(L) = � ln(Lmin) +
✓ � ✓̂)2

2�̂2
✓̂

� ln(L(✓̂ ± �̂✓̂) = � ln(Lmin) +
1

2

Using a result from information theory (information inequality)



Parameter Estimation
๏ Can see the result 

from the previous 
slide graphically 

๏ Remember that this is 
a confidence interval
—if we repeated this 
experiment many 
times, 68% of the 
time, the true value 
would fall in our 
calculated interval
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Bayesian Parameter Estimation
๏ Less interested in a point estimate of a 

parameter and more interested in the 
whole posterior 

๏ Need to account for prior in the 
analysis  

๏ Usually use some numeric tool to 
build up the posterior 
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Parameter Estimation
๏ Used a Markov Chain 

Monte Carlo to 
calculate the 
posterior*—essentially 
numerically integrating 
the posterior  

๏ Uniform prior on 
normalization between 
0 and 50, uniform 
prior on constant 
between 0 and -1

29
*More on this if we have time



Parameter Estimation
๏ Can select ANY 68% 

of the probability—so 
what should we select? 

๏ Have chosen a Highest 
Posterior Density 
Interval—the probability 
of any value inside the 
interval is higher than 
the probability of any 
value outside the 
inteval, and it contains 
68% of the probability
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Parameter Estimation
๏ What if a theorist 

told us: “I’m sure 
the value of the 
constant is 0.5±0.1” 

๏ We can use that as 
a Gaussian prior 
and compare our 
answer to the 
previous result
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Nuisance Parameters 
๏ So far have only been interested in 

a parameter of interest (our decay 
constant) 

๏ What if there are other parameters 
(detector, model) that we don’t care 
about, but have some knowledge 
of?
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Nuisance Parameters 
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๏ In the frequentist method, we add 
‘constraint terms’ to the likelihood 

๏ In the Bayesian framework, we 
just have a bunch more priors!



Nuisance Parameters 

๏ When we minimize a likelihood, we can just add 
our nuisance parameters to the list of things to 
minimize 

๏ Find a global minimum across all parameters 

๏ Look at the variation of the parameter of interest at 
the best estimate of the nuisance parameters
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Profiling

Lp ⌘ L(f, ✓̂)



Nuisance Parameters

๏ When we calculate a posterior, we can include all 
our nuisance parameters 

๏ Typically, when looking at a parameter of interest, we 
integrate (or marginalize) over the other parameters

35

Marginalizing



So. Does it matter?
๏ If everything is a 

gaussian, then there is 
no difference 

๏ Oddly shaped 
distributions can cause 
significant difference 

๏ Can also use hybrid 
techniques that 
marginalize over some 
parameters and profile 
over others

36

Yes!



BREAK TIME



Hypotheses
๏ A hypothesis H specifies the probability for the data, i.e., the outcome of 

the observation, here symbolically: x.  

๏ x could be uni-/multivariate, continuous or discrete.  

๏ x could represent e.g. observation of a single particle, a single event, or 
an entire “experiment”.  

๏ Possible values of x form the sample space S (or “data space”).  

๏ Simple (or “point”) hypothesis: f (x|H) completely specified.  

๏ Composite hypothesis: H contains unspecified parameter(s).  

๏ The probability for x given H is also called the likelihood of the hypothesis, 
written L(x|H). 

38

Defining your hypotheses carefully is probably the 
most critical part of your statistical exercise



Definition of a Test
๏ Consider e.g. a simple hypothesis H0 and alternative H1.  

๏ A test of H0 is defined by specifying a critical region W 
of the data space such that there is no more than some 
(small) probability α, assuming H0 is correct, to observe 
the data there, i.e.,  

 
If x is observed in the critical region, reject H0.  

๏ α is called the size or significance level of the test. 

๏ Critical region also called “rejection” region

P (x 2 W |H0)  ↵
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Definition of a Test
๏ There are an infinite number of possible critical 

regions that give the same significance level α.  

๏ So the choice of the critical region for a test of 
H0 needs to take into account the alternative 
hypothesis H1.  

๏ Roughly speaking, place the critical region 
where there is a low probability to be found if 
H0 is true, but high if H1 is true 
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Type-1 and Type-2 Errors

๏ Type 1 error: Reject H0 when it is true 

๏ Type 2 error: Fail to reject H0 when H1 is true, occurs with probability β  

๏ The power of a test is defined as 1-β  

๏ Generally you can pick 2 of 3 of α, β, and the amount of data in your 
experiment

41

β α 



Test Statistics
๏ In general, we’ll have lots of 

information about events 
from our detector 

๏ We want to distill this down 
to a 1D problem 

๏ The variable we’ll choose is 
called the test statistic 

๏ The Neyman-Pearson Lemma 
tells us that the highest power 
for a given significance level 
is given by t(x)

42

t(x) =
P (x|H1)

P (x|H0)



๏ p = probability, under assumption of H, to observe 
data with equal or lesser compatibility with H 
relative to the data we got.  

๏ This is NOT the probability that H is true!! 

๏ Often define significance as the number of 
standard deviations that a Gaussian variable 
would fluctuate in one direction to give the same p-
value (“5σ” discovery)

p-values
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Example
๏ Use our exponential 

example: 

๏ H0: the data comes from 
a uniform distribution 
(i.e., the exponential 
constant is 0) 

๏ H1: the data comes from 
an exponential 
distribution 

๏ Generate 100k example 
data sets from H0 and 
generate 
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Our example data set from Hour 1 
p=8E-5, 3.9σ 



Nuisance Parameters

๏ When we have 
nuisance 
parameters, nothing 
is optimal 

๏ “Near optimal” is 
the profile likelihood 
ratio test 
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t(x) =
L(f, ˆ̂✓)
L(f̂ , ✓̂)

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554



New Example
๏ Consider the case of trying to find some signal 

on top of some background with only a 
counting experiment: n=ns+nb 

๏ ns and nb are Poisson random variables with 
means s and b 

๏ Assume b is known 

๏ If n and b are close, then we won’t be able to 
say we’ve distinguished s from 0 → set an 
upper limit
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Limit Setting 
๏ In our example—or any physics application—we 

want to find the value of the signal parameter 
such that there is a given small probability (say α 
=0.05) to find as few events as we saw or fewer 

๏ This is hypothesis testing ‘in reverse’: H0: s=some 
value; H1: s=0 

๏ We adjust s until we can’t reject H0 at the given 
level any more
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↵ =
nX

k

(s+ b)kes+b

k!



Tests and Confidence Intervals
๏ Carry out a test of size α for all values of hypothesized θ. The 

values that are not rejected constitute a confidence region (or 
interval) for θ at confidence level CL = 1 – α. 

๏ The confidence interval will by construction contain the true 
value of θ with probability of at least 1 – α. The interval will 
cover the true value of θ with probability ≥ 1 – α.  

๏ Usually use a p-value of θ to define critical region of test as 
having pθ ≤ α.  

๏ The parameter values in the confidence region/interval have p-
values of at least α.  

๏ To find boundary of region/interval, set pθ = α and solve for θ. 
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Limit Setting 

49

Suppose n=0 and b=0
0.05 = e�s

supp = � ln(0.05) = 2.996

Suppose n=0 and b=3.1

0.05 = e�s+b

supp = � ln(0.05)� b = �0.1
😬

👍



What Happened?!?
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Physicist:  
We already knew s ≥ 0 before we started; can’t 
use negative upper limit to report result of 
expensive experiment!  

Statistician:  
The interval is designed to cover the true value 
only 95% of the time — this was clearly not one 
of those times.  

If we were frequentists with infinite budget and time, if we repeated 
our experiment many times, the mean upper limit is ~5



Nuisance Parameters
๏ Imagine we have 

some other set of 
data that can 
constrain the value 
of b—a sideband 

๏ It has m events, with 
m~Poisson(τβ) 

๏ Now we can use our 
PLR statistic
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L(s, b) = (s+b)ne�(s+b)

n!
(⌧�)me�⌧�

m!

�(s) = L(s,ˆ̂b)

L(ŝ,b̂)



‘Flip-Flopping’
๏ What if we don’t know 

whether we should set 
an upper limit or have a 
two-sided interval? 

๏ “If the result x is less 
then 3σ, I will state an 
upper limit from the 
standard tables. If the 
result is greater than 
3σ, I will state a central 
confidence interval from 
the standard tables.” 
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Feldman-Cousins
๏ The Feldman-Cousins 

ordering principle 
describes a way around 
the flip-flopping problem 

๏ Use our PLR test statistic 
with a treatment so that 
our parameter of interest 
cannot go below zero
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OK, what if I’m a Bayesian?
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First we need a prior, let’s start with 
⇡(s) ⇠ Uniform(0, 100)

In our example, when n=0, b=3.1
p(s|n) ⇠ p(n|s)⇡(s) ⇠ e�(s+b) ⇤ 0.01(s 2 [0, 100])

We find supp = 
-2.996 no matter 

the value of b 



Bayesian flip-flopping
๏ Using a HPD interval will naturally produce 

either a one- or two-sided credible interval 

๏ Or, you can always choose to set an upper 
limit—even if that’s dumb 

๏ However, these intervals do not have the 
conjugate properties of testing that 
confidence intervals do 

๏ We don’t have time today to talk about 
Bayesian hypothesis testing
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Goodness-of-Fit
๏ Sometimes we want to know: “does my 

model with optimized parameters represent 
the data well?” 

๏ In this case, H0 is the ‘saturated model’, that 
exactly matches the data, and H1 is the 
model we used to fit the data 

๏ This is only well defined for binned 
likelihoods
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Poisson Likelihood Ratio
๏ Note that this can 

be used any other 
place you’d use a 
likelihood! 

๏ This will be 
distributed as a χ2 
with dof as the 
number of bins 
minus the number of 
free parameters -1  
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t(x) =
Y

i

�ni
i e��i

ni!

Y

i

ni!

nni
i e�ni

t(x) =
Y

i

✓
�i

ni

◆ni

eni��i

� ln(t(x)) =
X

i

�i � ni + ni ln

✓
ni

�i

◆

-ln(t(x))=1.526 
p=0.466



BREAK TIME

RVFTUJPO



Multivariate Techniques
๏ Generally we refer to multivariate techniques as a 

way of going from many dimensions of information to 
one dimension. This includes: 

๏ Analytic techniques 

๏ Machine Learning 

๏ We’ve seen one multivariate technique already—
likelihood ratios! 

๏ I’m mostly going to talk about this in the light of a 
classification problem, but there’s active, ongoing 
research in applying these methods to MC 
generation, fitting, limit setting and more

59
With thanks to G. Cowan for 

many of the examples 



Tools

๏ ROOT has a number of 
multivariate tools available in 
TMVA 

๏ Python packages Scikit-learn and 
TensorFlow are the standards
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Classification
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If we had good knowledge of our PDFs, this 
would be easy! But what if we don’t?



General Terms
๏ Purity: fraction of signal events of selected 

events 

๏ Efficiency: fraction of all signal events which 
are in the selection 

๏ Training sample: MC used to optimize the 
discriminator 

๏ Testing sample: MC used after optimization to 
test discrimination
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Fisher (or Linear) Discriminant
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Choose wi for maximum separation 
and minimum width

maximize

Projecting on an axis transverse to 
the decision boundary shows 

maximum separation



Decision Trees
๏ From the set of input 

variables, find the single 
variable that, with a cut, 
creates the greatest 
increase in sample purity 

๏ Subsequent nodes 
classified as Signal or 
Background 

๏ Iterate until a stop 
condition is reached
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P =

P
signal wiP

signal wi +
P

background wi

wi = weight



Finding the Best Cut

๏ The level of separation within a node can be 
quantified by the Gini Coefficient:  

๏ If a cut separates set A into subsets B and C, 
maximize   , with 

G = p(1� p)

� = WaGa �WbGb �WcGc

Wa =
X

i2a

wi
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Decision Trees
๏ Terminal nodes are 

classified as Signal or 
Background by majority 

๏ This method tends to 
react strongly to 
fluctuations in the 
training sample  

๏ Boosting the tree can 
smooth out these effects
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Boosted Decision Trees
๏ Many kinds of boosting algorithm—

not just for decision trees! 

๏ AdaBoost, ε-Boost, LogitBoost, etc 

๏ General principle is to boost the 
weights of misclassified events in 
subsequent iterations to improve 
performance 
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MiniBooNE Example
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MiniBooNE use 
AdaBoost, and finds 
stability after a few 
hundred iterations



Neural Networks
๏ Neural Networks are an attempt to 

model neural processes 

๏ They’ve been around more than 80 
years—widely used in ML and AI 

๏ Essentially a way of parameterizing a 
set of basis functions defining the 
transformation of a feature space
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Single Layer Perceptron
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Define a discriminant:   
Typically h is some sigmoid function, called the activation function

y(~x) = h
⇣
w0 +

X
wixi

⌘

This is called the ‘single 
layer perceptron’ and, 
when h is monotonic, 
equivalent to a linear 

discriminant



Multilayer Perceptron
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Generalize to more 
than one layer



Example: NOvA
๏ Classifying event types 

as νe, νμ, or NC 

๏ Uses a convolutional 
neural network (CNN) 

๏ CNNs do some 
dimensionality 
reduction in hidden 
layers  

๏ Reduces 
computational 
complexity
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Common Pitfalls

๏ Overtraining—making your acceptance region 
too sensitive to your training sample 

๏ Data/MC disagreement—ensuring that you don’t 
have a garbage-in-garbage-out problem
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BREAK TIME
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Markov Chain Monte Carlo

๏Use Metropolis-Hastings 
algorithm with MCMC; 
doesn’t require calculating 
likelihood derivatives

Start here 
Calculate Pcurrent

Propose another point 
Calculate Pproposed; if better, step to that point 

if not, step with probability Pproposed/Pcurrent

Repeat!

Don’t step here— 
P too small

A Markov Chain maps out the 
probability density of a 
likelihood function, P
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Estimating Parameters and Uncertainties
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