# Dark Matter Searches at B-Factories: BaBar, Belle and Belle II

Doris Yangsoo Kim

November 1, 2023 IBS Conference on Dark World 2023 IBS Science and Culture Center, IBS HQ, Daejeon, Korea



# DARK MATTER SEARCH IN EXPERIMENTS

### **Three Frontiers**



- Energy Frontier possibilities
  - Dark particles directly produced by the LHC collider, exploiting high beam energy.
- Cosmic Frontier
  - Dark particle searches in underground labs, etc.
- Intensity Frontier
  - Interaction mediators between SM particles and Light dark mater (LDM)
  - Mediators enter into various portals



#### **Dark Sector Covered by e+ e- B-Factories**



4

#### **Dark Signatures at e+ e- Colliders**



Search signature depends on the dark mediator mass

- $ll(\gamma)$  (+ missing)
  - Visible: ALP  $\rightarrow$  ff minimal and non minimal dark photons
  - Invisible: dark photon. Z'
- *ll l' l'* 
  - Visible: ALP  $\rightarrow$  ff, scalars,  $\mu\mu \tau\tau, \tau\tau \tau\tau$ non minimal dark photons
- Single  $\gamma$ 
  - Invisible: dark photon, ALP  $\rightarrow \chi \chi$ , IDM, LLP
- γγ
  - Visible: ALP  $\rightarrow \gamma \gamma$
- Long lived particles (LLP)
  - A', ALP  $\rightarrow \chi \chi$ , IDM, scalars
- B meson decays into dark particles

# **B FACTORIES- BASICS**

### **Concept of e+ e- B Factory**



• B mesons  $(b\overline{q})$  are heavy and can decay via many different hadronic, semi-leptonic, and leptonic modes.

- Mass of B meson is around 5~6 GeV.
  - B pairs can be generated plentifully using ~ 11 GeV colliders
- Relatively lower energy makes it feasible to increase the intensity → intensity frontier
- First generation B factory:
  - ARGUS/DORIS II at DESY
  - CLEO/CESR at Cornell
- Next, asymmetric B factory:
  - BaBar/PEP-II at SLAC
  - Belle/KEKB at KEK
  - 2<sup>nd</sup> generation asymm. Belle II/SuperKEKB at KEK
- Detectors at B-Factories have versatile particle identification+ reconstruction abilities
  - Dark sector searches are also effective and gaining interests.

## **Two Asymmetric B Factories from 1999**

Belle / KEKB



**BABAR / PEP II** 



- CP Violation in the B section confirmed.
- Precision measurement of the CKM matrix. X(3872) and exotic particles.
- 2008 Nobel Prize, Kobayashi and Maskawa
- 2017 Hoam Prize (Korea), Sookyung Choi



### **KEKB and PEP-II: Performance**



#### The Belle II Detector



### **SuperKEKB Luminosity: Current Status**

- After the SupepKEKB commission phases, physics runs started spring 2019.
- Spring/summer 2022 run ended June.
  - Peak luminosity at  $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$ , the current world record on June 22nd.
  - Current integrated luminosity at  $\int L_{recorded} dt = 424 \ fb^{-1}$ . (~ Babar, ~ ½ Belle)
- Long shutdown 1 (LS1) started 2022 summer for upgrades (see later slides).
- Run 2 starts coming fall/winter.





November 1, 2023

#### **Merits of Dark Search at e+ e- B-Factories**

- The search region can reach lighter dark particles
- Background is lower compared to hadron colliders.
- Closed detectors ~  $4\pi$ 
  - Missing momentum and energy can be a signature of invisible particle(s)
- High efficiency of neutral particle findings
- Easy to find signatures. Full event interpretation possible.
  - Low multiplicity signatures possible
  - Dark particle signatures in B and  $\tau$  decays available
  - Clean environment can compensate for lower production cross-section.

# Z' SEARCH

### The $L_{\mu} - L_{\tau}$ Model

- A new gauge boson Z' assumed to couple only the 2<sup>nd</sup> and 3<sup>rd</sup> generation leptons.
  - May contribute to muon g-2
  - May explain dark matter abundance





#### Search for Invisible Z' : Belle II



#### **Search for Invisible** *Z***'**

- 79.7 fb<sup>-1</sup>. No excess found in the recoil mass.
- 90% CL upper limits on the cross-section and on g'



#### Search for Invisible Z': Belle



- Belle did the same search with the full sample.
- Comparison between Belle 977 fb<sup>-1</sup> and Belle II 79.7 fb<sup>-1</sup> shows the better sensitivity of Belle II

#### **Search in** $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$



- Belle II: Search for di-tau resonance in 4 lepton events.
  - Tau decays to one charged track + neutrals
- Dominant background from 4 leptons suppressed by M (4 tracks) < 9.5 GeV/c<sup>2</sup>
- Discrepancies between data and simulation are coming from non-simulated or unmodeled processes.



#### Search in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

- 62.8 fb<sup>-1</sup>. No excess found in the recoil mass. ٠
- 90% CL upper limits on the cross-section •

```
\sigma(e^+e^- \rightarrow (X \rightarrow \tau^+\tau^-) \mu^+\mu^-) = \sigma(e^+e^- \rightarrow X \mu^+\mu^-)B(X \rightarrow \tau^+\tau^-), with X = S, ALP, Z'
```

Exclusion limits on the couplings for three dark particle models obtained. ٠



Leptophilic scalar (S)

[2] W. Altmannshofer et. al. JHEP 12 (2016) 106

[3] B. Batell, N. Lange, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D 95, 075003 (2017)

[4] M. Bauer, M. Neubert, and A. Thamm, J. High Energy Phys. 2017, 44 (2017)

November 1, 2023

#### **Search in** $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$



- Belle II: Search for di-muon resonance in 4 lepton events.
- Mass peak search in the candidate muon pair.
  - At least three muons identified.
  - Total charge zero, M(4 tracks) ~ beam energy. No extra energy.
- Multi-layer Perceptron (MLP) based background suppression



Search in  $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ 

- 178 fb<sup>-1</sup>. No excess found.
- 90% CL upper limits on the process cross-section  $\sigma(e^+e^- \rightarrow X \mu^+\mu^-) \times B(X \rightarrow \mu^+\mu^-)$ , with X = Z', S



November 1, 2023

#### **Search in** $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

- 178 fb<sup>-1</sup>. No excess found.
- Cross-section limits translated into upper limits on the coupling constant
  - g' for the  $L_{\mu} L_{\tau}$  model



# **DARK HIGGS SEARCH**

#### Search in $e^+e^- \rightarrow \tau^+\tau^-l^+l^-$



- Belle: Search for leptophilic dark Higgs ( $\phi_L$ ) in 4 tau + 2 lepton events.
  - This mode can affect muon (g-2) results.
- Lepton = muon or electron,  $\xi$ : coupling strength
- Major background is  $e^+e^- \rightarrow \tau^+\tau^-$ .
- Radiative Bhabha (photon to two muons) removed by cuts on missing energy and its angle.
- Boosted Decision Tree (GrandientBoostingCassifier, scikit) is used to suppress backgrounds.



#### Search in $e^+e^- \rightarrow \tau^+\tau^-l^+l^-$



- 626 fb<sup>-1</sup> Belle sample
- 90% CL limit on ξ and mass of the dark scalar shown.
- More searches on the Belle full sample continues for a while.

#### Search in $e^+e^- \rightarrow \mu^+\mu^-$ + invisible h'



# **ALP SEARCH**

### **Axion Like Particle (ALP)**

#### **ALP strahlung**



- ALP: pseudo-scalars couple to bosons.
  - Difference to QCD axions: no relation between the coupling and the mass
- ALP-strahlung: to study photon coupling  $g_{a\gamma\gamma}$
- $B \rightarrow K$  a decays: to study  $g_{aW}$  couplings



#### **Search for** $e^+e^- \rightarrow \gamma a$ , $a \rightarrow \gamma \gamma$



November 1, 2023

#### **Search for** $e^+e^- \rightarrow \gamma a$ , $a \rightarrow \gamma \gamma$

$$\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{m_a^2}{s}\right)^3$$

 $\rightarrow$  World's best limit around 500 MeV

- Belle II 445 pb<sup>-1</sup> sample.
- 95% CL upper limits on the signal cross section and coupling  $g_{a\gamma\gamma}$



#### **Search for B** $\rightarrow$ *Ka*, *a* $\rightarrow$ $\gamma\gamma$

- BaBar results shown here: 90% CL limits on signal branching fraction and coupling.
- Cf) Belle II study on dark sector in B decays, arXiv:2306.02830, submitted to PRL.



#### **Search for B** $\rightarrow$ *Ka*, *a* $\rightarrow$ $\gamma\gamma$

- BaBar: look for two photon mass peak originated from B decays.
- Train separated boosted decision trees to separate backgrounds.



#### **Search for** $\tau \rightarrow l \alpha$ , $\alpha$ **invisible**

- Belle II: look for an invisible boson  $\alpha$  in tau decays.  $\alpha$  can be an ALP candidate.
- One tau (tag) decays into 3 charged pions. The other tau (signal) decays into one lepton and a missing particle signature.
- No significant excess in 62.8 fb<sup>-1</sup>.
- 95% CL upper limits on BF ratios of  $BF(\tau_{sig} \rightarrow \ell \alpha) / BF(\tau_{SM} \rightarrow \ell \nu \overline{\nu})$



 $\sim 2 \sim 14$  tighter limit than the previous ARGUS result

November 1, 2023

# **B MESOGENESIS**

#### **B-Mesogenesis**



Brian Shuve @ BNL Forum

- PRD 99, 035031 (2019) & PRD 105, 055024 (2022)
- Dark baryons produced in CPV decays of B mesons.
  - Can be a factor of baryogenesis and dark matter.
  - Example)  $B^0 \rightarrow \Lambda + \psi_D$ ,  $B^{\pm} \rightarrow p + \psi_D$ where  $\psi_D$  are invisible.
- Tagging B: Fully reconstructed B hadron decays
- Signal: single SM baryon + missing mass
- BDT used to separate signal from backgrounds.

#### **B-Mesogenesis**

- BaBar Results: No significant signal
- 90% CL limits on signal branching fraction
- Shaded regions: branching fraction prediction by B-mesogenesis



November 1, 2023 BABAR, PRD 107, 092001 (2023), arXiv:2306.08490 (submitted to PRL)

### Summary

- e+ e- B-factories provide unique opportunities to study dark sector
  - BaBar and Belle spearheaded the search in this area.
- SuperKEKB has achieved  $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$ , the world record on June 22<sup>nd</sup>, 2022.
  - It is a super B factory and in the full mode for physics analysis.
- Analysis techniques have been upgraded to the 2<sup>nd</sup> generation.
  - Many new possibilities opened, both in theory and experiment
- This is a very exciting time to look for new physics beyond the Standard Model, especially in the Dark Sector.

# **EXTRA**

## SuperKEKB Collider at Tsukuba, Japan



### **Belle II Physics Prospects**

#### https://confluence.desy.de/display/BI/Snowmass+2021

- Charm decays
- Next precision CKM matrix
  - Semileptonic B decays (CKM elements)
  - Hadronic B decays (angles and CPV)
  - Time dependent CP violation
- $\tau$  physics
- Hadron spectroscopy
- Rare decays, FCNC
- New physics
  - Lepton flavor violation
  - Dark sector, long lived particles



Belle II Physics Book, PTEP 2019, 123C01

#### **SuperKEKB Structure**



November 1, 2023

#### **KEKB to SuperKEKB: Accomplished**

positrons

- Nano beam scheme + Crab waist optics ٠
- Target: vertical beta function  $\beta_{v}^{*}$  5.9 mm (KEKB) to 0.3 mm (SuperKEKB) ۲
- Increase beam currents  $I_{e^+}$ •
- Increase beam-beam interaction  $\xi_{\nu}$ ٠



November 1, 2023

Doris Yangsoo Kim @ IBS Dark World 2023

Belle II detector

#### **Belle II Experiment in a Nutshell**

- HEP experiments have seen huge accomplishments during the last decades.
  - CPV/CKM, discovery of XYZ/tetra/penta particles, discovery of Higgs, etc.
  - Next major theme: New Physics, requiring more precision and larger samples.
- Belle II/SuperKEKB is the upgrade of Belle/KEK.
- Upsilon(4S) decays into  $B \overline{B}$  meson pairs, coherently with no additional fragments.
  - Full event reconstruction tagging possible
- Direct detection of neutrals such as  $\gamma$ ,  $\pi^0$ , K<sub>L</sub>.
- A hermetic detector:
  - Detection of neutrinos or invisibles as missing energy/momentum.
- Large continuum charm and  $\tau$  samples in addition to B samples.
  - Detect both e and  $\mu$  with similar performance.
  - For example, search for LFV  $\tau$  decays at  $O(10^{-9})$  possible.

#### **Belle II and LHCb**

- Belle II and LHCb have different systematics
  - Two experiments are required to establish NP.
  - LHCb: large  $b\overline{b}$  cross-section (LHCb 1 fb<sup>-1</sup> ~ Belle II 1 ab<sup>-1</sup>). Good sensitivity and S/N with di-muon modes and charged tracks with a vertex.



