Tau Polarimetry Update

Caleb Miller

B2GM Oct 2023

Tau Polarimetry

The polarization of tau's (P_τ) produced in e⁺e⁻ collisions at 10.58 GeV is related to the electron beam polarization (P_e) through:

$$P_{\tau^{-}} = P_e \frac{\cos\theta}{1 + \cos^2\theta} - \frac{8G_F sg_V^{\tau}}{4\sqrt{2}\pi\alpha} \left(g_A^{\tau} \frac{\overrightarrow{|p|}}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right)$$

Note: $\cos\theta$ defined as the polar angle of the τ^{-} with respect to the electron beam

Tau polarization information can be extracted from the kinematics of the tau decay

Tau Event Selection

- As a proof of concept, we have developed Tau Polarimetry at *BABAR* using $\tau^{\pm} \rightarrow \rho^{\pm} v_{\tau} \rightarrow \pi^{\pm} \pi^{0} v_{\tau}$ decays
- We expect uncertainties to be highly correlated between detectors due to similar designs
- Final measurement performed on total 424.18 fb⁻¹
- Selected tau events in a 1v1 topology, (ρ vs. e or mu)
 - ρ has large branching fraction, e or mu for clean tag
- Signal candidates are defined as a charged particle with a π^0
- qq
 events are eliminated with the lepton requirement
- Angular cuts and a minimum p_T of 350 MeV reduce two photon and Bhabha contamination
- Achieve a 99.9% pure tau-pair sample (0.05% Bhabha, 0.05% $\mu^+\mu^-$)
- 88% of selected events contain a $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0}\nu_{\tau}$ decay
 - 10% a1 decays, 2% other hadronic

Final systematics

- 21 contributions
- Neutrals dominate 6/7 top systematics

Source	Run 1	Run 2	Run 3	Run 4	$\operatorname{Run}5$	Run 6	Combined
π^0 Efficiency	0.0025	0.0016	0.0013	0.0018	0.0006	0.0017	0.0013
Muon PID	0.0018	0.0018	0.0029	0.0011	0.0006	0.0016	0.0012
Photon Split-off Modelling	0.0015	0.0017	0.0016	0.0006	0.0016	0.0020	0.0011
Neutral Energy Scale	0.0027	0.0012	0.0023	0.0009	0.0014	0.0008	0.0010
π^0 Mass	0.0018	0.0028	0.0010	0.0005	0.0004	0.0004	0.0008
$\pi - \pi^0$ Angular Separation	0.0015	0.0009	0.0016	0.0007	0.0005	0.0005	0.0007
π^0 Likelihood	0.0015	0.0009	0.0015	0.0006	0.0003	0.0010	0.0006
Electron PID	0.0011	0.0020	0.0008	0.0006	0.0005	0.0001	0.0005
Particle Transverse Momentum	0.0012	0.0007	0.0009	0.0002	0.0003	0.0006	0.0004
Boost Modelling	0.0004	0.0019	0.0003	0.0004	0.0004	0.0004	0.0004
Momentum Scale	0.0001	0.0014	0.0005	0.0002	0.0001	0.0003	0.0004
Max EMC Acceptance	0.0001	0.0011	0.0008	0.0001	0.0002	0.0005	0.0003
τ Direction Definition	0.0003	0.0007	0.0008	0.0003	0.0001	0.0004	0.0003
Angular Resolution	0.0003	0.0008	0.0003	0.0003	0.0002	0.0003	0.0003
Background Modelling	0.0005	0.0006	0.0010	0.0002	0.0003	0.0003	0.0003
Event Transverse Momentum	0.0001	0.0013	0.0005	0.0002	0.0002	0.0004	0.0003
Momentum Resolution	0.0001	0.0012	0.0004	0.0002	0.0001	0.0005	0.0003
Rho Mass Acceptance	0.0000	0.0011	0.0003	0.0001	0.0002	0.0005	0.0003
Tau Branching Fraction	0.0001	0.0007	0.0004	0.0002	0.0002	0.0002	0.0002
$\cos \theta^{\star}$ Acceptance	0.0002	0.0006	0.0004	0.0001	0.0001	0.0004	0.0002
$\cos\psi$ Acceptance	0.0002	0.0003	0.0002	0.0002	0.0002	0.0003	0.0002
Quadratic Sum	0.0058	0.0062	0.0054	0.0030	0.0026	0.0038	0.0029

Paper Status

• Final measurement:

 $\langle P \rangle = 0.0035 \pm 0.0024_{stat} \pm 0.0029_{sys}$

- Paper on the arxiv: <u>arXiv:2308.00774</u>
- Paper has been accepted by PRD
- Working on final back-and-forth edits before publication

ReneSANCe MC Generator Updates

Caleb Miller

B2GM Oct 2023

Calculating A_{LR} in the $e^+e^- \rightarrow e^+e^-(\gamma)$ process

- ReneSANCe is a "new" MC generator, published June 2020
 - Renat Sadykov, Vitaly Yermolchyk, Polarized NLO EW e+e- cross section calculations

with ReneSANCe-v1.0.0 (2020); DOI:10.1016/j.cpc.2020.107445

- Has special ALR modes which calculate ALR numerator and denominator directly
- Much quicker to calculate ALR with this mode than through event generation

Calculating A_{LR} in the $e^+e^- \rightarrow e^+e^-(\gamma)$ process

- We compare the generator predictions to recent NLO calculations be Aleksejevs *et al.*
 - A.G. Aleksejevs, S.G. Barkanova, Y.M. Bystritskiy and V.A. Zykunov, "Electroweak Corrections with Allowance for Hard Bremsstrahlung in Polarized Bhabha Scattering". *Phys. Atom. Nuclei* 83, 463–479 (2020). https://doi.org/10.1134/S1063778820030035
- They integrate ALR as a function of electron direction (cut symmetrically)

 $a < \theta_{e^-} < 180^\circ - a$

Comparisons

- Aleksejevs et al. state they calculate
 ALR by requiring |cosθ⁺|≤cos20°
- I ran the generator in two modes, one where |cosθ⁺|≤cos20° (asymmetric) and one where |cosθ⁺|≤ |cosθ⁻|<a (symmetric)
- We understand the deviation below 20 to be due to the shift in the positron becoming the less constrained particle

Comparisons

- Looking at the differences (ReneSANCe-Aleksejevs) we see the Born level calculations are in good agreement
- The NLO differences are understood to be leading NNLO terms present in ReneSANCe

$sin^2\theta_W$ Sensitivity

• As a proxy to varying the value of $\sin^2\theta_{\rm W}$ in the MC we vary the W mass

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

• Varied in steps of 12 MeV (world average experimental uncertainty)

$sin^2\theta_W$ Sensitivity

 As the cross-section varies exponentially with acceptance the optimal measurement may not be at peak A_{LR}

$sin^2\theta_W$ Sensitivity

- Evaluated sensitivity in three steps
- 1. Normalize $A_{LR} m_W$ sensitivity $(A_{LR}(m_W)/A_{LR}^{SM})$
- 2. Weight by a statistical (from xsec and 50ab⁻¹) and systematic uncertainty (stat=1/VN, sys=0.0029) (Left Plot)
- 3. Parametrize curves and fit for a max (Right Plot)

Conclusions

- Expected statistical error is ~1-2%, Aleksevejs vs ReneSANCe differ by ~1%
- Still need to double check all calculations
- Working on writing up a paper
- Will include:
- The differences between the two theory calculations
- Projections for $\sin^2\theta_W$ sensitivity
- A study of the optimal angular selection as a function of luminosity