Spin Rotator Stability Studies Noah Tessema Yuhao Peng, Mike Roney

University of Victoria

What we've been working on:

- Improvements to the Spin Rotator Design in BMAD
 - Mixed Slice Studies
 - Increased Slice Studies
- Long-Term Tracking (LTT) of the 156 slice spin rotator with radiative linear effects)
 - PMID studies
 - Polarization/Spin Retention Studies
 - Spin Tune Analysis
- Frequency Map Analysis (FMA) of the 156 slice spin rotator

dampening (RF on) and quantum fluctuations (LTT takes into account non-

Difficulties with other slice models

The complete optical rematch is difficult.

- Yuhao believed that beyond 96 slices, it would be very difficult to match. We thought it would be quick, but...
- Optimizers are extremely sensitive, tend to find local minima instead of true minima.
- Many steps that took little time optimizing in the 96 model require alternative approaches to succeed in the 156 model
- Some models early on simply couldn't be optimized or failed (120, 144)

Mixed Slice Studies

We settled on the 156 slice model since we had success rematching the left rotator (but not the right rotator)

- We decided to use the lrot of the 156 slice rotator alongside the rrot of the 96 slice rotator
- Beta and dispersion functions looked more HER-like with increased slicing.
- Performing long term tracking on this mixed rotator showed some initial promising results
- Eventually found a solution and was able to make a complete 156-slice Spin Rotator model

R156 rrot issue discovered

old RROT R156 (incorrect length) RROT R96 (correct length)

- How I fixed it: went straight to the beginning and found out there was a discrepancy in the length of the right rotator (rrot)
- This + a number of fine adjustments to the fitters over the course of debugging the rrot was enough to completely match

R156 optical rematch results

HER only

HER + R156

HER + R96 (Yuhao)

LTT of the R156

- Good news: The completed R156 spin rotator model looks stable up to 2.5 million turns (the top-up time)
 - 100 particles at 20,000 turns: all survived
 - 20 particles at 200,000 turns: all survived
 - 20 particles at 2,500,000 turns: all survived!
 - 20 particles at 5,000,000 turns: <u>all survived!</u>

R156 spin-retention issues

Individual particle spins over 2.5m turns

2.5x1(

- However, there is significant loss in spin stability the longer the particle is present in the ring.
- Physics analyses is still possible, though we don't know if this is acceptable.

R156 spin-retention issues

Average spin over 200,000 turns

Average spinz over 200,000 turns

R156 PMID spin-retention issues

- PMID is located directly opposite of the IP
- For posterity, changed the starting point of long term tracking (as well as the initial spin) to the PMID for 10 particles across 2.5m turns
- Spin degradation is still a problem.

Final spin values for 3 of the 10 particles

Spin Relaxation

- Overall spin diminishment may be caused by radiative effects.
- The Novosibirsk group conducted a study with their alternative model
- The spin relaxation time plateaus around the working point of the SuperKEKB HER
- We want to probe this region across various energies using LTT.

Radiation spin relaxation time as a function of energy from the Novosibirsk Spin Rotator Group

Spin Relaxation

- Need to re-optimize the R156 model several times for alternate energies, since the beam energy effects various optical parameters
- Unfortunately wasn't able to simply optimize the closed lattice. Need to break it down into pieces again
- Currently doing at the open geometry rematch stage for these models

Radiation spin relaxation time as a function of energy from the Novosibirsk Spin Rotator Group 50

|P|, % (•)

0

- Uli suggested that small energy changes should be sufficient for the time being to check how polarization is retained (without rematching the Spin Rotator for several energies).
- Changing the energy on order of 1%
 - Original: 7.007GeV
 - Alternatives probed: 7.000, 7.014, 7.021, 7.028, 7.035 GeV

Spin Tune Studies First 500 turns 500 turn window near 500k turns

Peak Frequency: 0.08617

0.08

0.09

Frequency

7.007GeV (nominal)

9700

500 turn window near

2.5M turns

\times 0.0 -0.5 10000 9700 9900 0.5 0.0 Sp -0.5-1.010000 9700 9800 9900 9500 9600 9700 9800 9900 Fourier Fourier --- FFT(SpinX) 200 Abs(FFT(SpinZ)) 100 _____ 0.08 0.09 0.10 0.11 0.12 0.05 0.06 0.07 0.08 0.09 0.10 250 **---** FFT(SpinY) 200 Abs(FFT(SpinY)) 150 100

50

-50

0.05

0.06

0.07

0.08

Frequency

0.09

0.10

(Unscaled)

0.12

1.0

0.5

(Does not depend on number of turns)

0.11

0.10

Spin Tune Studies

Peak Frequency: 0.08617

R156

μm

(Still need higher resolution final plots)

R156

R156

(Still need higher resolution final plots)

HER (old)

Immediate Plans

- Complete energy scan to find the optimal energy for the polarization lifetime
- Comprehensive rematch of R156 using optimal energy
- Spin Tune analysis at the optimal energy
- Higher resolution FMA studies at optimal energy
- Increased turns and particles for LTT at optimal energy

Future Plans

- Translate Rot_156 from BMAD to SAD and repeat studies
- Touschek Scattering
- Beam-Beam effects

Study the effect of placement tolerances for machine elements

Summary

- Validated with Long Term Tracking to 5M turns, no particle loss in the new Rot_156 model (20 particles)
- Nominal Energy is not optimal for maximizing polarization lifetime. Adjusting by +28MeV increases polarization lifetime (from ~1.7 min to
 - ~20 min)
 - Top up is every 50 seconds for 2500 bunches at 50Hz, so 30 top up times
- It works

