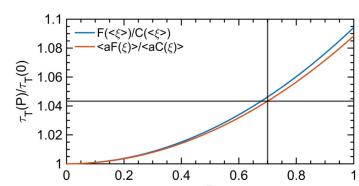
Beam lifetime estimation at SuperKEKB

Andrii Natochii natochii@hawaii.edu

Motivation: Transverse polarization measurements at SuperKEKB

Use Touschek lifetime to measure beam polarization

The Chiral Belle Conceptual Design Report: Upgrading SuperKEKB with a Polarized Electron Beam


Belle II Collaboration

Executive Summary

Upgrading the SuperKEKB electron-positron collider with polarized electron beams opens a new program of precision physics at a center-of-mass energy of 10.58 GeV, the mass of the $\Upsilon(4S)$ meson. This white paper describes the physics potential of this 'Chiral Belle' program. It includes projections for precision measurements of $\sin^2 \theta_W$ that can be obtained from independent left-right asymmetry measurements of e^+e^- transitions to pairs of electrons, muons, taus, charm and b-quarks. The $\sin^2 \theta_W$ precision obtainable at SuperKEKB will match that of the LEP/SLC world average but at the centre-of-mass energy of 10.58 GeV. Measurements of the couplings for muons, charm, and b-quarks will be substantially improved and the existing 3σ discrepancy between the SLC A_{LB} and LEP A_{ER}^b measurements will be addressed. Precision measurements of neutral current universality will be more than an order of magnitude more precise than currently available. As the energy scale is well away from the Z⁰-pole, the precision measurements will have sensitivity to the presence of a parity-violating dark sector gauge boson, Zdark. The program also enables the measurement of the anomalous magnetic moment q-2 form factor of the τ to be made at an unprecedented level of precision. A precision of 10⁻⁵ level is accessible with 40 ab⁻¹ and with more data it would start to approach the 10^{-6} level. This technique would provide the most precise information from the third generation about potential new physics explanations of the muon q-2 4σ anomaly. Additional τ and QCD physics programs enabled or enhanced with having polarized electron beams are also discussed in this White Paper.

In order to implement e^- beam polarization in the SuperKEKB high energy ring (HER), three hardware upgrades are required: 1) introduction of a low-emittance polarized source that supplies SuperKEKB with transversely polarized electrons that provide separate data sets with opposite polarization states; 2) a system of spin rotator magnets that rotate the spin of the electrons in the beam to be longitudinal before the interaction point (IP) where the Belle II detector is located, and then back to transversely polarized after the IP; and 3) a Compton polarimeter that provides online measurements of the beam polarization at a location between the first spin rotator and the IP. A precision measurement of the polarization is also made at the IP by analysing the spin-dependent decay kinematics of τ leptons produced in a $e^+e^- \rightarrow \tau^+\tau^-$ data set. This White Paper will review the current status of the R&D associated with the three hardware projects and describes the τ polarimetery analysis of 0.4ab $^-$ 1 of e^+e^- data collected at the $\Upsilon(4S)$ with the BABAR experiment that shows the high precision that can achieved. This paper includes a summary of the path forward in R&D and next steps required to implement this upgrade and access its exciting discovery potential.

For SuperKEKB

From
Farah MAWAS
Aurélien MARTENS
Slides at Feb
Chiral Belle meeting

- It is ~4% effect assuming (overall) momentum acceptance of 0.6%, and using her_2021-06-09 231636.388 MeasOpt
- · This is likely observable in SuperKEKB
- May need to inject both polarized and unpolarized beams in the ring and measure bunch/bunch intensity with time to minimize systematics (feasbile according to Demin)
- Maybe F/C factor could be calibrated by comparing measurements with various momentum acceptances? (linked to RF voltage?)

10/02/2023

IJCLab Update about Compton polarimeter

7

Background measurements

A dedicated beam-induced background measurement is performed to measure each background component separately, usually twice a year

Non-injection data LER heuristic fit Luminosity BG data Dose rate [mrad/s] HER heuristic fit LER decay HER decay 500 300 09-09h 09-19h 09-11h 09-17h Time [Day-Hour]

An example of dedicated beam background measurements in SuperKEKB. Top: typical measured detector background; bottom: measured machine parameters.

We could use the same data for Touschek lifetime measurements

Beam-gas background

Elastic and inelastic particle scattering off of residual gas molecules

$$O_{\text{beam-gas}} = B \times IP_{\text{eff}}$$

Touschek background

Inelastic scattering of two particles in the same beam bunch

$$O_{\text{Touschek}} = T \times \frac{I^2}{n_b \sigma_x \sigma_y \sigma_z}$$

Luminosity background

Radiative Bhabha and two-photon processes

$$O_{\text{lumi}} = L \times \mathcal{L}$$

For more details, see the Phase 3 paper

https://doi.org/10.48550/arXiv.2302.01566

Beam current as a function of beam lifetime

$$I=I_0 imes e^{-rac{t}{ au}}$$

Heuristic fit formula for beam losses

$$rac{I}{ au} = -rac{\mathrm{d}I}{\mathrm{d}t} = B imes Iar{P}_{\mathrm{eff.}} + T imes rac{I^2}{n_{\mathrm{b}}\sigma_{\mathrm{x}}\sigma_{\mathrm{y}}\sigma_{\mathrm{z}}}$$

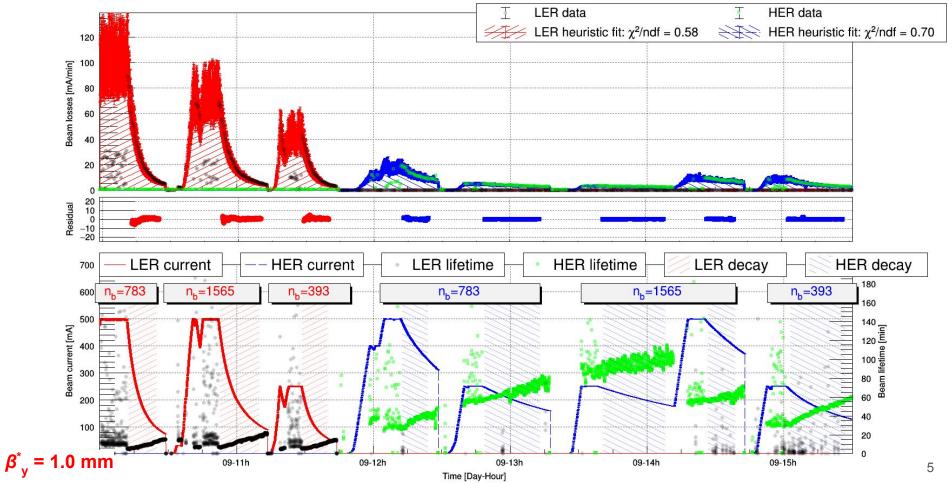
ring average effective residual gas pressure seen by the beam # of bunches in the ring bunch volume

Heuristic fit formula

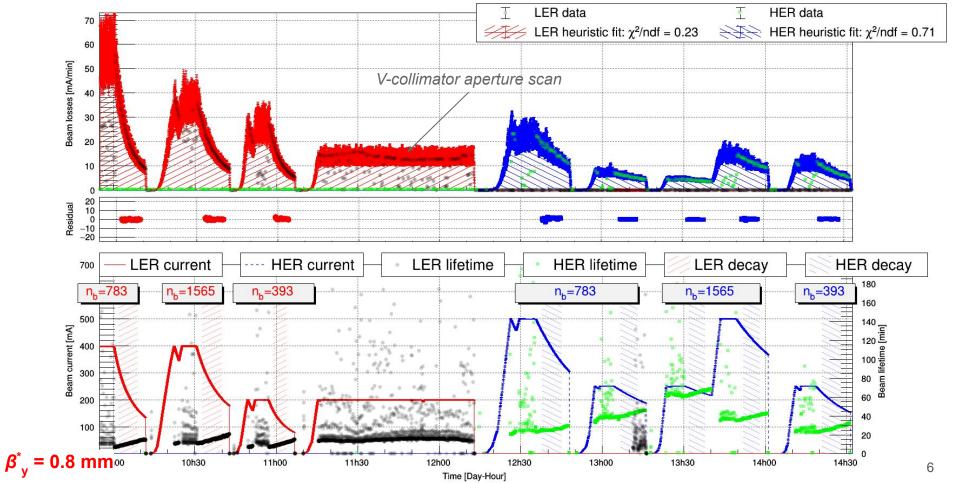
Bunch length [H.Ikeda, KEK, private communication (2021)]

$$\sigma_{
m z}^{
m LER} [{
m mm}] = 5.4466 + 1.7642 imes rac{I^{
m LER} [{
m mA}]}{n_{
m b}^{
m LER}} \ \sigma_{
m z}^{
m HER} [{
m mm}] = 6.0211 + 1.3711 imes rac{I^{
m HER} [{
m mA}]}{n_{
m b}^{
m HER}}$$

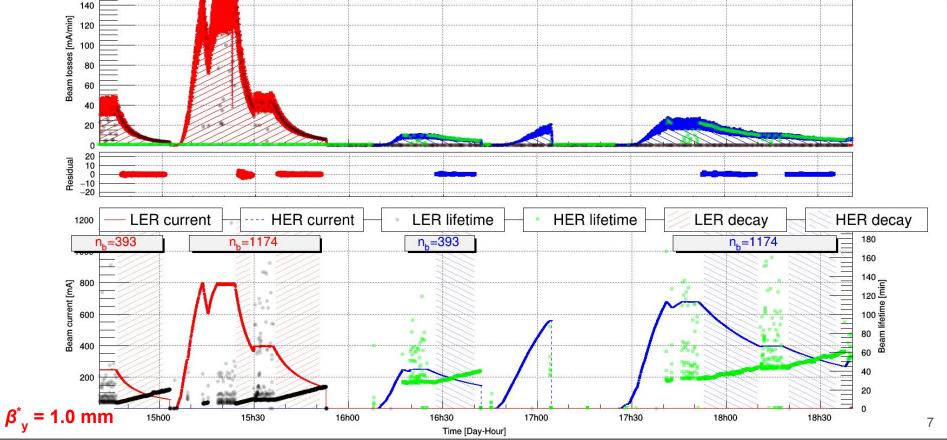
$ar{P}_{ m eff.} = 3I ({ m d}ar{P}/{ m d}I)_{ m CCG} + ar{P}_{ m 0,CCG} = 3ar{P}_{ m CCG} - 2ar{P}_{ m 0,CCG}$ base pressure

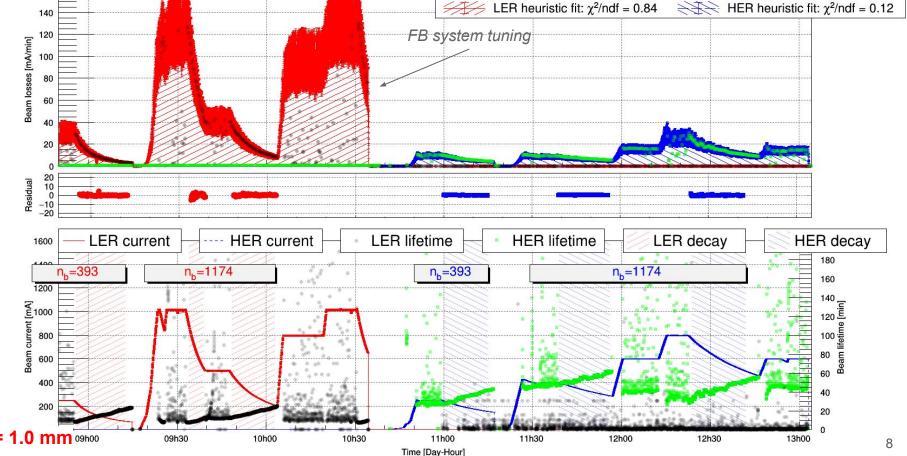

For more details, see the Phase 3 paper

https://doi.org/10.48550/arXiv.2302.01566

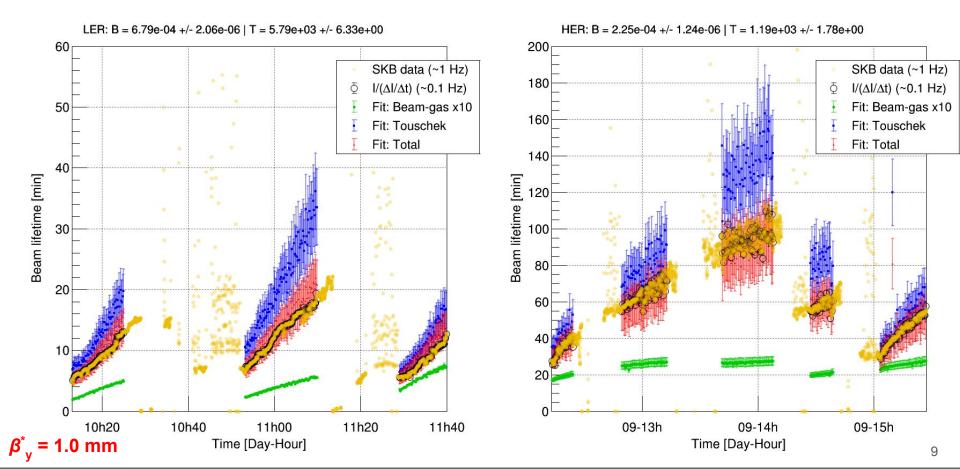

average CCG gas pressure over sensing ring sections Table 3: Base $(\bar{P}_{0,CCG})$ and dynamic $((d\bar{P}/dI)_{CCG})$ fit parameters of the measured CCG gas pressure averaged over sensing ring sections as a function of beam currents.

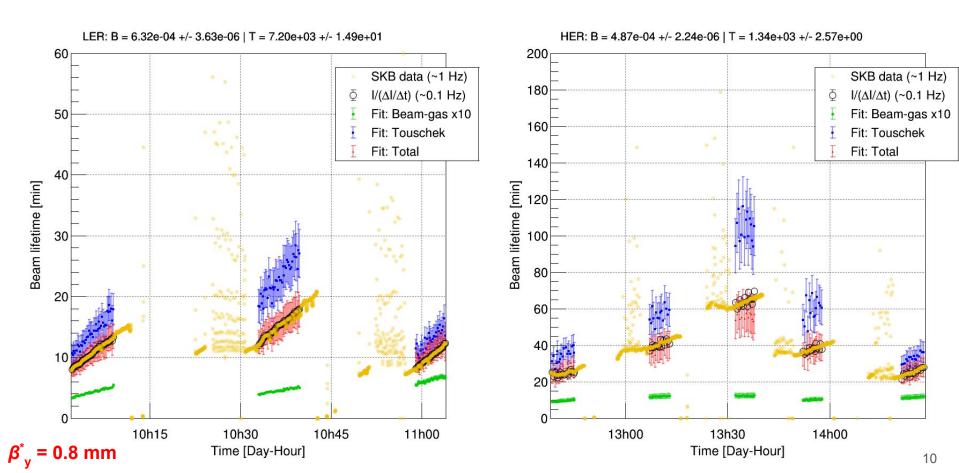
Sensing ring sections		$ar{P}_{0, ext{CCG}}$ [nPa]		$(\mathrm{d} \bar{P}/\mathrm{d}I)_{\mathrm{CCG}}$ [nPa/A]	
D01-D12	D02, D04, D09	14.79 ± 0.22	9.66 ± 0.58	52.08 ± 1.25	11.54 ± 1.44
D01-D12	D02, D04, D09	13.07 ± 0.44	10.13 ± 0.79	36.23 ± 2.00	9.77 ± 2.04
D01-D11	D02, D04, D09, D12	12.68 ± 0.16	10.72 ± 0.04	30.55 ± 0.57	6.24 ± 0.08
D01-D11	D02, D04, D12	7.92 ± 0.95	10.52 ± 0.03	39.76 ± 1.42	5.40 ± 0.04
	LER D01-D12 D01-D12 D01-D11	LER HER D01-D12 D02, D04, D09 D01-D12 D02, D04, D09 D01-D11 D02, D04, D09, D12	LER HER LER D01-D12 D02, D04, D09 14.79 ± 0.22 D01-D12 D02, D04, D09 13.07 ± 0.44 D01-D11 D02, D04, D09, D12 12.68 ± 0.16	LER HER LER HER D01-D12 D02, D04, D09 14.79 ± 0.22 9.66 ± 0.58 D01-D12 D02, D04, D09 13.07 ± 0.44 10.13 ± 0.79 D01-D11 D02, D04, D09, D12 12.68 ± 0.16 10.72 ± 0.04	LER HER LER HER LER D01-D12 D02, D04, D09 14.79 ± 0.22 9.66 ± 0.58 52.08 ± 1.25 D01-D12 D02, D04, D09 13.07 ± 0.44 10.13 ± 0.79 36.23 ± 2.00 D01-D11 D02, D04, D09, D12 12.68 ± 0.16 10.72 ± 0.04 30.55 ± 0.57


Calculated every 10 sec. $-rac{\Delta I}{\Delta t}=B imes I\overline{P}_{ ext{eff.}}+T imes rac{I^2}{n_{ ext{b}}\sigma_{ ext{x}}\sigma_{ ext{y}}\sigma_{ ext{z}}}$ Fit results for May 2020


Calculated every 10 sec. $-rac{\Delta I}{\Delta t}=B imes I\overline{P}_{
m eff.}+T imesrac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$ Fit results for June 2020

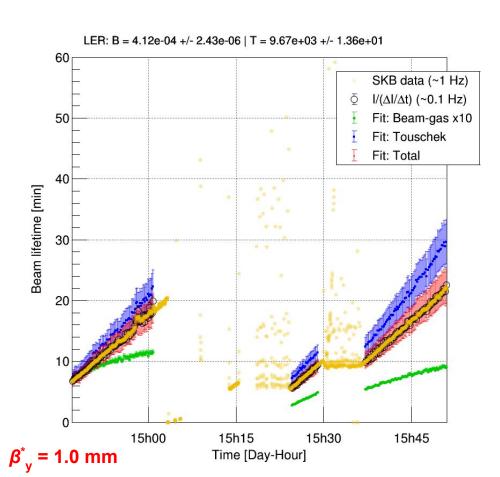
 $-rac{\Delta I}{\Delta t}=B imes I\overline{P}_{ ext{eff.}}+T imes rac{I^2}{n_{ ext{h}}\sigma_{ ext{u}}\sigma_{ ext{u}}}$ Calculated every 10 sec. Fit results for June 2021 LER data HER data LER heuristic fit: $\chi^2/ndf = 0.08$ HER heuristic fit: $\chi^2/\text{ndf} = 0.14$


 $-rac{\Delta I}{\Delta t} = B imes I\overline{P}_{
m eff.} + T imes rac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$ Calculated every 10 sec. Fit results for Dec. 2021 LER data HER data LER heuristic fit: χ^2 /ndf = 0.84 FB system tuning

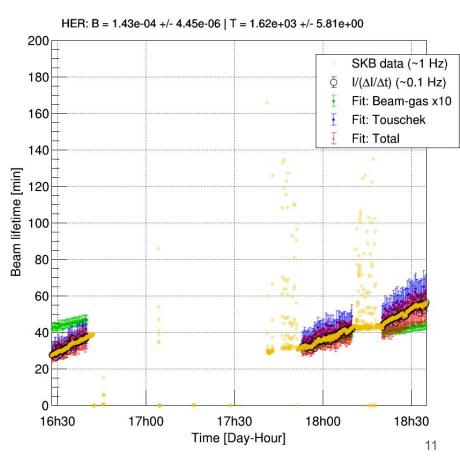

160

$$-rac{\Delta I}{\Delta t} = B imes I\overline{P}_{
m eff.} + T imes rac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$$

Beam lifetime estimation for May 2020

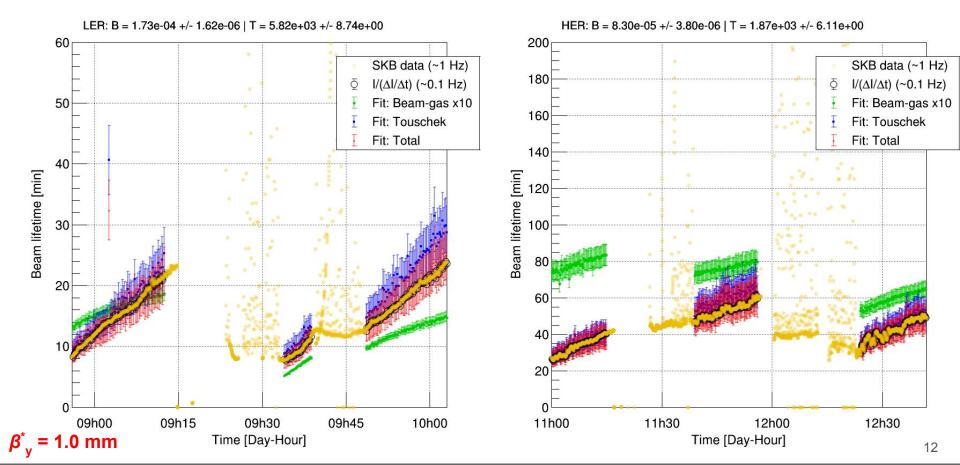


Beam lifetime estimation for June 2020



 $-rac{\Delta I}{\Delta t} = B imes I\overline{P}_{
m eff.} + T imes rac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$

Beam lifetime estimation for June 2021



 $-rac{\Delta I}{\Delta t} = B imes I\overline{P}_{
m eff.} + T imes rac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$

$$-rac{\Delta I}{\Delta t}=B imes I\overline{P}_{ ext{eff.}}+T imes rac{I^2}{n_{ ext{b}}\sigma_{ ext{x}}\sigma_{ ext{y}}\sigma_{ ext{z}}}$$

Beam lifetime estimation for December 2021

Experimental data fit (EXP) VS SAD simulation (SIM)

	Exportmental data in (EXI) vo oxis simulation				
	EXP uncertainty source: SIM uncertainty source:	fit parameters (B, T) & vacuum pressure (P ₀ , dP/dI) statistics			
May 2020 Beam-gas LER: Touschek LER: Beam-gas HER: Touschek HER:	EXP = 7.277 +/- 6.745 [min]	SIM = 25.471 +/- 0.243 [min]	EXP/SIM = 0.286 +/- 0.265		
	EXP = 5.173 +/- 0.006 [min]	SIM = 6.749 +/- 0.008 [min]	EXP/SIM = 0.766 +/- 0.001		
	EXP = 100.368 +/- 78.485 [min]	SIM = 298.516 +/- 3.135 [min]	EXP/SIM = 0.336 +/- 0.263		
	EXP = 37.929 +/- 0.057 [min]	SIM = 59.054 +/- 0.114 [min]	EXP/SIM = 0.642 +/- 0.002		
June 2020 Beam-gas LER: Touschek LER: Beam-gas HER: Touschek HER:	EXP = 11.023 +/- 10.019 [min]	SIM = 32.592 +/- 0.273 [min]	EXP/SIM = 0.338 +/- 0.307		
	EXP = 8.722 +/- 0.018 [min]	SIM = 13.985 +/- 0.023 [min]	EXP/SIM = 0.624 +/- 0.002		
	EXP = 52.044 +/- 38.692 [min]	SIM = 334.795 +/- 3.292 [min]	EXP/SIM = 0.155 +/- 0.116		
	EXP = 33.656 +/- 0.064 [min]	SIM = 45.126 +/- 0.275 [min]	EXP/SIM = 0.746 +/- 0.005		
June 2021 Beam-gas LER: Touschek LER: Beam-gas HER: Touschek HER:	EXP = 19.764 +/- 17.721 [min]	SIM = 60.807 +/- 0.443 [min]	EXP/SIM = 0.325 +/- 0.291		
	EXP = 6.390 +/- 0.009 [min]	SIM = 15.716 +/- 0.018 [min]	EXP/SIM = 0.407 +/- 0.001		
	EXP = 238.081 +/- 151.571 [min]	SIM = 660.056 +/- 5.382 [min]	EXP/SIM = 0.361 +/- 0.230		
	EXP = 27.929 +/- 0.100 [min]	SIM = 46.505 +/- 0.138 [min]	EXP/SIM = 0.601 +/- 0.003		
December 2021 Beam-gas LER: Touschek LER: Beam-gas HER: Touschek HER:	EXP = 38.354 +/- 36.346 [min]	SIM = 34.968 +/- 0.291 [min]	EXP/SIM = 1.097 +/- 1.039		
	EXP = 10.614 +/- 0.016 [min]	SIM = 15.659 +/- 0.017 [min]	EXP/SIM = 0.678 +/- 0.001		
	EXP = 450.678 +/- 274.018 [min]	SIM = 760.409 +/- 4.992 [min]	EXP/SIM = 0.593 +/- 0.360		
	EXP = 24.107 +/- 0.079 [min]	SIM = 46.554 +/- 0.136 [min]	EXP/SIM = 0.518 +/- 0.002		

Assumptions, uncertainties, and improvements

Heuristic fit formula:

$$\int -rac{\Delta I}{\Delta t} = B imes I\overline{P}_{
m eff.} + T imes rac{I^2}{n_{
m b}\sigma_{
m x}\sigma_{
m y}\sigma_{
m z}}$$

- Archived EPICS PVs used for the analysis (measured beam parameters)
 - Beam current at beam current monitors: I(LER/HER) = SKB2:BM<L/H>DCCT:CURRENT
 - \Rightarrow DCCT (KEKB [link]) syst. unc. = 10 μ A
 - Beam size at X-ray monitors: $\sigma_{x,y}(LER/HER) = SKB2:BM<L/H>XRM:BEAM:SIGMA<X,Y>$
 - ⇒ syst. unc. $(x/y) = 10/1 \hat{\mu}m$ (could be overestimated)
 - \Rightarrow offset $\Delta(x/y) = 10/7 \ \mu m \rightarrow \sigma^{corr} = (\sigma^2 \Delta \sigma^2)^{1/2} [link]$
 - Average vacuum pressure in a given section (D01-12): P_i(LER/HER) = SKB2:VA<L/H>CCG:D<i>_<L/H>ER:PRES:AVG
 - ⇒ rel. unc. for individual CCG = 10%
 - \Rightarrow rel. unc. for a section is assumed = 10%/ \sqrt{N} , where N is the number of CCGs in the given section
- Most SKB PVs have different timestamp, therefore, a linearly interpolated value between two neighbor points is taken at the given time
- Possible improvements
 - Clarify uncertainties for the beam parameters used in the fit
 - \circ The bunch length (σ_{τ}) could be taken from measurements, instead of using fit results