Anomalies from R_K and R_{K^*} at Belle/Belle II

Kota Nakagiri KEK

b→sℓ+ℓ-

- Flavor Changing Neutral Current process
 - Penguin/Box diagrams are dominant
 - suppressed in the SM (Br ~ O(10⁻⁶))
 - sensitive to NP
 - loop or tree level NP contributions
 - SUSY, Leptoquark, flavorful Z', etc..
- various observables :
 - Branching fraction
 - Angular distribution (P'5, AFB, etc..)
 - Lepton Flavor Universality test (Rκ^(*))
 * represented as a function of q² (=m²(ℓ+ℓ⁻))

b→sl+l- : Wilson Coefficients

• effective Hamiltonian :

deviation from CSM = NP contribution

b→sℓ+ℓ- : Wilson Coefficients

$$R_K = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}, \qquad R_{K^*} = \frac{\mathcal{B}(B \to K^*\mu^+\mu^-)}{\mathcal{B}(B \to K^*e^+e^-)}$$

- Lepton Flavor Universality test with $b \rightarrow s\ell^+\ell^-$
 - take a ratio of branching fractions
 →cancel out many of theoretical/experimental uncertainties
 →very clean observable
- if LFU holds (SM), RK(*) ~ 1
 - small deviation from unity in low q^2 region due to m_e/m_μ difference
 - other deviation from unity implies NP

R_K and R_K anomalies

 2.6σ deviation from SM

 $2.1-2.5\sigma$ deviation from SM

Belle & BaBar results are consistent with both SM and LHCb results need more precise measurements \Rightarrow · latest results from Belle(Rk, Rk*)

- and LHCb(RK) (← not mentioned today)
- prospect in Belle II

other b→sl+l- anomalies

LHCb : JHEP06(2014)133

plot from <u>arXiv:1606.00999</u>

Belle : PRL 118 (2017) 111801

Global Fit

model-independent fit to Wilson coefficients using $R_{K()}, b \rightarrow s\ell\ell$ differential branching fractions, angular observables, $b \rightarrow s\gamma$, $Br(B \rightarrow X_s \mu \mu)$, $Br(B_s \rightarrow \mu \mu)$

best fit : $C_{9\mu}^{NP} \sim -1$ • ~25% level of SM ($C_{9\mu}^{SM} \sim 4.1$) • favor $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ (V-A) scenario

 LHCb results are dominant in the fit
 ⇒ independent measurements from Belle / Belle II are important

Belle / Belle II

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$ $\rightarrow \leftarrow$

Detector upgrades

- better and larger vertex detectors (PXD+SVD)
- improved PID with TOP and ARICH

Belle / Belle II

 $e^+e^- \rightarrow Y(4S) \rightarrow BB$

Belle II started data taking

- achieved luminosity of 1.2×10³⁴ cm⁻²s⁻¹
- accumulated 6.5 fb⁻¹ data by this summer

arXiv.org > hep-ex > arXiv:1904.02440

High Energy Physics – Experiment

Test of lepton flavor universality in $B \to K^* \ell^+ \ell^-$ decays at Belle

Belle Collaboration: A. Abdesselam, I. Adachi, K. Adamczyk, J. K. Ahn, H. Aihara, S. Al Said, K. Arinstein, Y. Arita, D. M. Asner, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakich, Y. Ban, V. Bansal, E. Barberio, M. Barrett, W. Bartel, P. Behera, C. Beleño, K. Belous, M. Berger, F. Bernlochner, D. Besson, V. Bhardwaj, B. Bhuyan, T. Bilka, J. Biswal, T. Bloomfield, A. Bobrov, A. Bondar, G. Bonvicini, A. Bozek, M. Bračko, N. Braun, F. Breibeck, T. E. Browder, M. Campajola, L. Cao, G. Caria, D. Červenkov, M.-C. Chang, P. Chang, Y. Chao, R. Cheaib, V. Chekelian, A. Chen, K.-F. Chen, B. G. Cheon, K. Chilikin, R. Chistov, H. E. Cho, K. Cho, V. Chobanova, S.-K. Choi, Y. Choi, S. Choudhury, D. Cinabro, J. Crnkovic, S. Cunliffe, T. Czank, M. Danilov, N. Dash, S. Di Carlo, J. Dingfelder, Z. Doležal, T. V. Dong, D. Dossett, Z. Drásal, A. Drutskoy, S. Dubey, D. Dutta, S. Eidelman, D. Epifanov, J. E. Fast, M. Feindt, T. Ferber, A. Frey, O. Frost, B. G. Fulsom, R. Garg, V. Gaur, N. Gabyshev, A. Garmash, M. Gelb, J. Gemmler, D. Getzkow, F. Giordano, A. Giri, P. Goldenzweig, B. Golob, D. Greenwald, M. Grosse Perdekamp, J. Grygier et al. (361 additional authors not shown)

(Submitted on 4 Apr 2019 (v1), last revised 5 Apr 2019 (this version, v2))

We present a measurement of R_{K^*} , the ratio of the branching fractions $\mathcal{B}(B \to K^* \mu^+ \mu^-)$ and $\mathcal{B}(B \to K^* e^+ e^-)$, for both charged and neutral B mesons. The ratio for charged B mesons, $R_{K^{*+}}$, is the first measurement ever performed. The analysis is based on a data sample of 711 fb⁻¹, containing 772 × 10⁶ $B\bar{B}$ events, recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

 Subjects:
 High Energy Physics – Experiment (hep-ex)

 Report number:
 BELLE-CONF-1901

 Cite as:
 arXiv:1904.02440 [hep-ex]

 (or arXiv:1904.02440 [hep-ex]

Submission history

Recent Rr* Result at Belle

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)

arXiv:1904.02440

We gratefully acknowledge support from the Simons Foundation and member institutions.

Search... All fields V Search

Download: • PDF • Other formats (license) Current browse context: hep-ex < prev | next > new | recent | 1904 References & Citations • INSPIRE HEP (refers to | cited by) • NASA ADS Google Scholar Bookmark

x II 🧐 📷

R_{K*} measurement at Belle

- with full data set of 711 fb⁻¹
- mode : $B^0 \rightarrow K^{*0}\ell^+\ell^-$, $B^+ \rightarrow K^{*+}\ell^+\ell^- + C.C. (\ell^+\ell^-=e^+e^-, \mu^+\mu^-)$

 K^{*0} : $K^{*0} \rightarrow K^{+}\pi^{-}$ K^{*+} : $K^{*+} \rightarrow K^{+}\pi^{0}$, $K^{*+} \rightarrow K_{S}\pi^{+}$

- main background sources:
 - Combinatorial BG :
 - require $M_{bc} = sqrt(E_{beam^2} p_{B^2}) \sim m_B, \Delta E = E_B E_{beam} \sim 0$
 - Charmonium BG : $B \rightarrow J/\psi K^*$, $B \rightarrow \psi(2S)K^*$
 - veto $m(\ell \ell) \sim m_{J/\psi}, m_{\psi(2S)}$
 - Peaking BG : Κπππ → Κπμμ mis-PID
 - Continuum BG : e+e-→qq contribution
 - Event shape, MVA
- Fit M_{bc} distribution with Signal + Combinatorial / Charmonium / Peaking BG components in each q² region

* first measurement for RK*+

Fit to Mbc

fit example : q²>0.045 (GeV/c²)² (full q² region)

signal yield : e-mode : 103.0 ^{+13.4}/_{-12.7}, µ-mode : 139.9 ^{+16.0}/_{-15.4}

Results

Measurements vs. SM

arXiv.org > hep-ex > arXiv:1908.01848

Test of lepton flavor universality in $B \to K \ell^+ \ell^-$ decays

High Energy Physics – Experiment

Search... All fields 🗸 Search

	Download: • PDF • PostScript • Other formats (license)			
	References & Citations INSPIRE HEP (refers to cited by) NASA ADS 			

 $R_{K} = \left\{ 0.95 \substack{+0.27 \\ -0.24} \pm 0.06 \quad q^{2} \in (0.1, 4.0) \text{ GeV}^{2}c^{4}, 0.81 \substack{+0.28 \\ -0.23} \pm 0.05 \quad q^{2} \in (4.0, 8.12) \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.23} \pm 0.06 \quad q^{2} \in (1.0, 6.0) \text{ GeV}^{2}c^{4}, 1.11 \substack{+0.29 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.23} \pm 0.06 \quad q^{2} \in (1.0, 6.0) \text{ GeV}^{2}c^{4}, 1.11 \substack{+0.29 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.23} \pm 0.06 \quad q^{2} \in (1.0, 6.0) \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.23} \pm 0.06 \quad q^{2} \in (1.0, 6.0) \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.23} \pm 0.06 \quad q^{2} \in (1.0, 6.0) \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18 \text{ GeV}^{2}c^{4}, 0.98 \substack{+0.27 \\ -0.26} \pm 0.07 \quad q^{2} > 14.18$

The first uncertainties listed are statistical, and the second uncertainties are systematic. The R_K value in the whole q^2 range is found to be $1.06_{-0.14}^{+0.15} \pm 0.07$. We also measure CP-averaged isospin asymmetries in the same q^2 bins; the results are consistent with a null asymmetry with the largest difference of 2.7 standard deviations is found in the $q^2 \in (1.0, 6.0)$ GeV² c^4 bin in the mode with muon final states. The measured branching fractions are $\mathcal{B}(B \to K\mu^+\mu^-) = (5.5 \pm 0.5 \pm 0.3) \times 10^{-7}$ and $\mathcal{B}(B \to Ke^+e^-) = (5.1 \pm 0.5 \pm 0.3) \times 10^{-7}$. These results are compatible we have been stated as the model superstations.

Recent R_K Result at Belle

e as: arXiv:1908.018

(or arXiv:1908.01848v1 [hep-ex] for this ve

Submission history

From: Saurabh Sandilya [view email] [v1] Mon, 5 Aug 2019 20:33:36 UTC (52 KB)

R_K measurement at Belle

- with full data set of 711 fb⁻¹
- mode : $B^+ \rightarrow K^+ \ell^+ \ell^-$, $B^0 \rightarrow Ks\ell^+ \ell^- + C.C. (\ell^+ \ell^- = e^+ e^-, \mu^+ \mu^-)$
- main background sources:
 - Charmonium BG : $B \rightarrow J/\psi K$, $B \rightarrow \psi(2S)K$
 - veto m($\ell \ell$) ~ m_{J/ ψ}, m_{ψ (2S)}
 - Peaking BG :
 - $B^+ \rightarrow D^0(\rightarrow K^+\pi^-)\pi^+$, $\pi\pi$ miss-ID as $\mu\mu \rightarrow$ veto m(K⁺ μ^-) ~ m_D
 - B+ \rightarrow K+J/ Ψ (\rightarrow µµ), Kµ miss-ID as µK \rightarrow veto m(K+µ-) ~ m_{J/Ψ}
 - Continuum BG : e+e-→qq
 - Generic B decay BG
 - semileptonic decays of B-B pair, $B \rightarrow D^{(*)}(\rightarrow X \ell v) \ell v$, hadron miss-ID as lepton
- Neural Net for continuum and generic B backgrounds
 - use event shapes, vertex quality, kinematic variables
 - 1/4 background suppression with 4-5% signal acceptance loss
- 3D fit to M_{bc} , ΔE , NN output in each q^2 region

Fit Results

fit example: q²>0.1 (GeV/c²)² (whole q² region)

signal yield : μ -mode: 137.0 $^{+14.2}_{-13.5}$, e-mode: 138.0 $^{+15.5}_{-14.7}$ * B⁰ \rightarrow K_s ℓ + ℓ - modes : μ -mode: 27.3 $^{+6.6}_{-5.9}$, e-mode: 21.8 $^{+7.0}_{-6.1}$

fit sum

signal

....

Results

Global Fit

(latest Belle R_K result is not included)

D. Straub, Moriond EW 2019

Muonic C_9 vs. C_{10}

 $\begin{array}{l} C_9^{bs\mu\mu}\,(\bar{s}_L\gamma^\mu b_L)(\mu\gamma_\mu\mu)\\ C_{10}^{bs\mu\mu}\,(\bar{s}_L\gamma^\mu b_L)(\mu\gamma_\mu\gamma_5\mu) \end{array}$

tension is mitigated

Pre-Moriond ←dashed

- Perfect agreement between $R_{K^{(*)}}$ & $b \rightarrow s\mu\mu$
- Pull towards $C_{10} > 0$ mostly from $B_s \rightarrow \mu^+ \mu^-$
- Excellent for models with LH leptons $(C_9 = -C_{10})$

Now ←solid

- Agreement between $R_{K^{(*)}} \& b \to s \mu \mu$ no longer perfect
- Fit closer to SM, $C_9 = -C_{10}$ still preferred

- not so agree with other
 b→sµµ anomaries
- $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ senario is preferred

R_K(*) **Prospects in Belle II**

- O(3%) precision measurements with 50 ab⁻¹ data
- comparable sensitivity to LHCb for low-q² region
- advantage in high-q² region, Rx_s

Summary

- b \rightarrow sl+l- is a rich field of NP search
- Latest Belle results of RK(*) are consistent with SM
- Belle II will measure RK(*) with O(3%) precision

Stay tuned !!

one of the angular obserbables in $B \rightarrow K^*(\rightarrow K\pi)\mu\mu$ (JHEP01(2013)048) reducing form factor uncertaiinty

angular distribution can be represented as a function of three angles and q²:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos2\theta_\ell \right]$$
$$- F_L \cos^2\theta_K \cos2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos2\phi + S_4 \sin2\theta_K \sin2\theta_\ell \cos\phi + S_5 \sin2\theta_K \sin\theta_\ell \cos\phi + S_6 \sin^2\theta_K \cos\theta_\ell + S_7 \sin2\theta_K \sin\theta_\ell \sin\phi + S_8 \sin2\theta_K \sin2\theta_\ell \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin2\phi \right],$$
$$+ S_8 \sin2\theta_K \sin2\theta_\ell \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin2\phi \right],$$
$$* S_i, F_L \text{ are functions of } q^2$$
$$K_i = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}.$$

P'5

Belle, LHCb, ATLAS measurements show deviations from SM prediction

Q₅ : LFU observable

- larger deviation from SM in μ -mode
- Q₅ is a LFU observable
 - hadronic uncertainties cancel to a large extent
 - more reliable SM prediction

PID:

Likelihood using CDC, TOF, ACC, ECL, KLM information: Pe = Le / (Le + L π) > 0.9 Pµ = Lµ / (Lµ + L π) > 0.9

kinematic selection : $e: p > 0.4 \text{ GeV/c} \rightarrow >86\%$ efficiency w/ >99% π rejection $\mu: p > 0.7 \text{ GeV/c} \rightarrow >92\%$ efficiency w/ >99% π rejection

Brems. recovery for electrons add energy within 0.05 rad of the initial direction of electron track

charged-K PK = LK / (LK + L π) >0.1 \rightarrow >99% eff. w/ 94% π rejection

Reconstruction:

Ks : vertex fit with $\pi+\pi- \rightarrow 74\%$ efficiency

 $\pi0$: Eq>30 MeV & 115 < M(qq) < 153 MeV/c2 (±4\sigma)

```
K* : K<sup>*0</sup> : K<sup>*0</sup>→K<sup>+</sup>π<sup>-</sup>
K<sup>*+</sup> : K<sup>*+</sup>→K<sup>+</sup>π<sup>0</sup>, K<sup>*+</sup>→K<sub>S</sub>π<sup>+</sup>
require 0.6 < M(Kπ) < 1.4 GeV/c2 & vertex fit quality
```

B reconstruction with K* candidate and two oppositely charged leptons

Rк*, **Belle(2019)**: <u>arXiv:1904.02440</u>

Background:

• Combinatorial background ← dominant background

incorrect combinations of tracks

⇒Mbc, ΔE cut

 $5.22 < Mbc < 5.30 \text{ GeV/}c^2$

-0.10 (-0.05) < ΔE < 0.05 GeV for electron (muon)

Charmonium background

B→J/ ψ (→I+I-)K*, B→ ψ (2S) (→I+I-)K* contribution (irreducible background) →veto for M(I+I-)

 $\begin{array}{ll} -0.25 \ (-0.15) < M(I^+I^-) - M_{J/\psi} &< 0.08 \ GeV/c^2 & \mbox{for electron (muon)} \\ -0.20 \ (-0.10) < M(I^+I^-) - M_{\psi(2S)} < \ 0.08 \ GeV/c^2 & \mbox{for electron (muon)} \\ \mbox{in electron mode, both w/ and w/o Brems. recovery} \end{array}$

Peaking background

double flavor misidentification (Κπππ → Κπμμ) →peak in Mbc only for muon mode.

better PID for electron (E/p~1 with ECL) makes this BG negligible small for e-mode.

Continuum background

 $ee \rightarrow qq$ contribution. suppress using MVA.

MVA Classifier:

Continuum BG 含め、さらにBGを減らすためのMVA : hierarchal neural net

Decay chainの中で出てくる全粒子(e[±], μ[±], K⁺, π⁺, K^{*}, K_s, π⁰)それぞれに対して、

particle dedicated NN identifier BのDecay mode毎(Bº->K*ºµ+µ-, B+→K*+e-e+ など)にtop-level classifier を用意して Signal - BGを判別

インプットは、particle dedicated NN identifier, Event shape variables (modified FW moments), vertex fit 結果, reconstructed mass や momentum angleなどのkinematics

top-level classifier のoutputでカット。

cut pointは FoM = $n_s / sqrt(n_s + n_b)$ を定義し、これが最大となるように決めた。

FoMはMbc>5.27 GeV/c2 のMC sampleを用いて評価

Fit:

Fit to Mbc with four components (in each q² region):

- Signal : Crystal Ball function
 - $B \rightarrow J/\psi K^* \rightarrow$ calibrate shape parameters
- Combinatorial BG : ARGUS function
- Charmonium BG : Kernel Density Estimation (KDE) w/ x100 stat. MC
- Peaking BG : KDE w/ MC

yields of Charmonium BG and Peaking BG are evaluated by MC and fixed in the fit.

(systematic uncertainty of the yields are evaluated by varying the fixed yields by

 \pm 50%(peaking) / \pm 25%(charmonium). Resulting signal yield deviations are included as part of the systematics.)

Systematic Uncertainty:

- Crystal-Ball functionのshape parameterをそのuncertainty範囲で振って、
 その最大変化幅を計上
- Charmonium BG とPeaking BGのnormalizationによるsignal yield のsystematicsは、 BG yieldを50%(peaking) / 25%(charmonium) 振って評価
- Lepton ID eff. のData-MC differenceによるsystematicsはee→eeee(µµ)から補正
 - Signal eff. は Br(B→J/ψK*)を求めること(world average consistent)でvalidate
 - ・この補正を使って

Br(B→J/ψ(→µµ)K*) / Br(B→J/ψ(→ee)K*) = 1.015 ± 0.025_{stat.} ±0.038_{corr.} を求めて validate →OK

- MVA Classifier response についてはclassifier output bin毎にBr(B→J/ψK*)を求めて nominal resultと評価→違いをweightとしてDataに当てたうえでMbc Fit
 - → signal yieldの変化をsystematicsに計上

Systematic Uncertainty:

q^2 in GeV^2/c^4	e, μ eff.	MC size	Classifier	Sig. shape	Tracking	Peaking bkg.	Charmonia bkg.	Total
All modes								
[0.045, None]	0.061	0.004	0.013	0.008	0.016	0.031	0.023	0.075
[0.1, 8]	0.058	0.005	0.029	0.002	0.016	0.054	0.051	0.100
[15, 19]	0.090	0.012	0.012	0.014	0.020	0.003	0.003	0.095
[0.045, 1.1]	0.027	0.006	0.008	0.025	0.009	0.026	0.001	0.047
[1.1, 6]	0.065	0.008	0.048	0.033	0.017	0.070	0.013	0.114
B^0 modes								
[0.045, None]	0.073	0.006	0.030	0.018	0.022	0.031	0.021	0.092
[0.1, 8]	0.058	0.006	0.040	0.019	0.017	0.033	0.018	0.084
[15, 19]	0.091	0.013	0.007	0.012	0.022	0.007	0.001	0.096
[0.045, 1.1]	0.024	0.007	0.044	0.005	0.009	0.049	0.001	0.071
[1.1, 6]	0.082	0.010	0.040	0.062	0.021	0.070	0.012	0.133
B^+ modes								
[0.045, None]	0.044	0.005	0.032	0.018	0.010	0.025	0.023	0.068
[0.1, 8]	0.060	0.010	0.039	0.040	0.014	0.048	0.107	0.144
[15, 19]	0.089	0.028	0.016	0.041	0.021	0.008	0.002	0.106
[0.045, 1.1]	0.033	0.013	0.067	0.060	0.009	0.006	0.000	0.097
[1.1, 6]	0.045	0.010	0.137	0.060	0.011	0.086	0.009	0.179

TABLE I. Systematic uncertainties on R_{K^*} for different q^2 regions.

q²>0.045 (GeV/c²)² の全領域。

赤がシグナルで、yieldは、e: 103.0 +13.4-12.7, µ: 139.9 +16.0-15.4 青がCombinatorial BG、緑がcharmonium BG, 紫がpeaking BG.

Results:

Rк*, **Belle(2019)**: <u>arXiv:1904.02440</u>

Results:

TABLE II. Result for R_{K^*} , $R_{K^{*0}}$ and $R_{K^{*+}}$. The first uncertainty is statistical and the second is systematic.

q^2 in ${ m GeV}^2/c^4$	All modes	$B^0 \mathrm{modes}$	B^+ modes		
[0.045, 1.1]	$0.52^{+0.36}_{-0.26}\pm0.05$	$0.46^{+0.55}_{-0.27}\pm 0.07$	$0.62^{+0.60}_{-0.36}\pm 0.10$		
[1.1, 6]	$0.96^{+0.45}_{-0.29}\pm0.11$	$1.06^{+0.63}_{-0.38}\pm 0.13$	$0.72^{+0.99}_{-0.44}\pm 0.18$		
[0.1, 8]	$0.90^{+0.27}_{-0.21}\pm0.10$	$0.86^{+0.33}_{-0.24}\pm 0.08$	$0.96^{+0.56}_{-0.35} \pm 0.14$		
[15, 19]	$1.18^{+0.52}_{-0.32}\pm0.10$	$1.12^{+0.61}_{-0.36}\pm 0.10$	$1.40^{+1.99}_{-0.68} \pm 0.11$		
[0.045,]	$0.94^{+0.17}_{-0.14}\pm 0.08$	$1.12^{+0.27}_{-0.21}\pm0.09$	$0.70^{+0.24}_{-0.19}\pm0.07$		

Pre-selection:

- impact parameter : |d| < 1 cm, |z| < 4 cm except for Ks daughters
- pt > 100 MeV/c for all tracks

Particle selection:

- K± : Likelihood ratio using CDC, TOF, ACC PK = LK / (LK + Lπ) >0.6 \rightarrow >92% eff. w/ 93% π rejection
- Ks :

 $487 < m(\pi + \pi \text{-}) < 508$ MeV/c2 (3 σ window)

Neural Net based selector

• µ: KLM based PID

p > 0.8 GeV/c,

 $R\mu > 0.9$: 89% eff. w/ 1.5% π miss-PID

• e: CDC/ECL based PID

p > 0.4 GeV

Re > 0.9 : 92% eff. w/ <1% π miss-PID

Brems. recovery for electrons

Reconstruction:

B reconstruction with K±/Ks candidate and two oppositely charged leptons

- require ΔE and Abc cut :
 - -0.1 < ΔE < 0.25 GeV
 - Mbc > 5.25 GeV/c2

Background:

Charmonium background

B→J/ ψ (→I+I-)K, B→ ψ (2S) (→I+I-)K contribution (irreducible background) →veto for M(I+I-)

8.5 $(8.75) < M^2(I+I-) < 10.2 \text{ GeV}^2/c^4$ for electron (muon) 12.8 $(13.0) < M^2(I+I-) < 14.0 \text{ GeV}^2/c^4$ for electron (muon) ##? in electron mode, both w/ and w/o Brems. recovery

• $\gamma^* \rightarrow e^+e^- / \pi^0 \rightarrow \gamma e^+e^-$ contamination

veto low q2 region : $< 0.05 \text{ GeV}^2/c^4$

Continuum background : ee→qq contribution two back-to-back jets of π/K suppress based on event topology

Generic B decay background: three categories

(a) bath B B-bar decay semileptonically

(b) $B \rightarrow D(*) (\rightarrow X | v) X | v$

- (c) hadronic B decays where one or more daughters are misidentified as leptons
- NN to suppress continuum and generic B decay backgrounds using event shapes, vertex quality, kinematic variables
- ➡1/4 background suppression with 4-5% signal acceptance loss

Background:

Fit:

3D fit to Mbc, ΔE , NN output with four components (in each q² region):

- Signal :
 - Mbc : sum of a Gaussian and a Crystal Ball function
 - ΔE : single Gaussian
 - O': sum of asymmetric Gaus. and a regular Gaus. with common mean
 - all shape parameters from MC, with calibration using B→JpsiK
- B decay BG, Continuum BG
 - Mbc : ARGUS
 - ΔE : exponential
 - O' : Gaussian

yield of continuum BG is estimated with off-resonance data

Systematic Uncertainty:

TABLE I: Results from the fits. The columns correspond to the q^2 bin size, decay modes, reconstruction efficiency, signal yield, branching fraction, lepton-flavor-separated and combined A_I and R_K .

~ ²	Mode	ε	$N_{ m sig}$	${\mathcal B}$	A_I	A_I	R_K	R_K
$(\operatorname{GeV}^{q}/c^{4})$		(%)		(10^{-7})	(individual)	(combined)	(individual)	(combined)
(0.1, 4.0)	$B^+ \to K^+ \mu^+ \mu^-$	20.8	$28.4_{-5.9}^{+6.6}$	$1.72^{+0.4}_{-0.4} \pm 0.08$	$A_I(\mu\mu) =$	$-0.22^{+0.14}_{-0.12} \pm 0.01$	$R_{K+} =$	$0.95^{+0.27}_{-0.24} \pm 0.06$
	$B^0 \to K^0_S \mu^+ \mu^-$	14.7	$6.8^{+3.3}_{-2.6}$	$0.62^{+0.30}_{-0.23}\pm0.03$	$-0.10^{+0.20}_{-0.17}\pm0.01$		$0.92^{+0.27}_{-0.24}\pm0.05$	
	$B^+ \to K^+ e^+ e^-$	27.8	$41.5_{-7.0}^{+7.7}$	$1.88^{+0.35}_{-0.31}\pm0.08$	$A_I(ee) =$		$R_{K_{S}^{0}} =$	
	$B^0 \to K^0_S e^+ e^-$	18.4	$5.5^{+3.6}_{-2.7}$	$0.40^{+0.26}_{-0.21}\pm0.02$	$-0.35^{+0.21}_{-0.17}\pm0.01$		$1.5^{+1.2}_{-1.0} \pm 0.1$	
(4.0,8.12)	$B^+ \to K^+ \mu^+ \mu^-$	29.2	$28.4_{-5.7}^{+6.4}$	$1.2^{+0.3}_{-0.2}\pm0.06$	$A_I(\mu\mu) =$		$R_{K+} =$	$0.81^{+0.28}_{-0.23} \pm 0.05$
	$B^0 \to K^0_S \mu^+ \mu^-$	20.8	$4.2^{+4.2}_{-3.5}$	$0.27^{+0.18}_{-0.13}\pm0.02$	$-0.33^{+0.23}_{-0.19}\pm0.01$	$0.08 \pm 0.15 \pm 0.01$	$1.22^{+0.42}_{-0.37}\pm0.07$	
	$B^+ \to K^+ e^+ e^-$	33.9	$26.9^{+6.9}_{-6.1}$	$1.00^{+0.26}_{-0.23}\pm0.04$	$A_I(ee) =$	$-0.00_{-0.12} \pm 0.01$	$R_{K_{S}^{0}} =$	
	$B^0 \to K^0_S e^+ e^-$	22.8	$9.3^{+3.7}_{-3.0}$	$0.54^{+0.22}_{-0.18}\pm0.03$	$0.11^{+0.19}_{-0.16}\pm0.01$		$0.50^{+0.39}_{-0.30}\pm0.03$	
(1.0, 6.0)	$B^+ \to K^+ \mu^+ \mu^-$	23.5	$42.3_{-6.9}^{+7.6}$	$2.3^{+0.4}_{-0.4}\pm0.1$	$A_I(\mu\mu) =$	$-0.30^{+0.13}_{-0.11} \pm 0.01$	$R_{K+} =$	$0.98^{+0.27}_{-0.23} \pm 0.06$
	$B^0 \to K^0_S \mu^+ \mu^-$	16.7	$3.9^{+2.7}_{-2.0}$	$0.31^{+0.22}_{-0.16}\pm0.02$	$-0.52^{+0.20}_{-0.17}\pm0.02$		$1.31^{+0.34}_{-0.31}\pm0.07$	
	$B^+ \to K^+ e^+ e^-$	30.4	$41.7^{+8.0}_{-7.2}$	$1.74^{+0.33}_{-0.30}\pm0.08$	$A_I(ee) =$		$R_{K_{S}^{0}} =$	
	$B^0 \to K^0_S e^+ e^-$	20.1	$8.9^{+4.0}_{-3.2}$	$0.59^{+0.27}_{-0.21}\pm0.03$	$-0.12^{+0.18}_{-0.15}\pm0.01$		$0.53^{+0.44}_{-0.33}\pm0.03$	
> 14.18	$B^+ \to K^+ \mu^+ \mu^-$	45.3	$47.9^{+8.6}_{-7.8}$	$1.34^{+0.24}_{-0.22}\pm0.06$	$A_I(\mu\mu) =$		$R_{K+} =$	
	$B^0 \to K^0_S \mu^+ \mu^-$	25.3	$9.6^{+4.2}_{-3.5}$	$0.51^{+0.22}_{-0.18}\pm0.03$	$-0.07^{+0.17}_{-0.15}\pm0.01$	$-0.13^{+0.14} \pm 0.01$	$1.08^{+0.30}_{-0.27}\pm0.06$	$1.11^{+0.29}_{-0.26} \pm 0.07$
	$B^+ \to K^+ e^+ e^-$	44.2	$43.2_{-8.3}^{+9.1}$	$1.24^{+0.26}_{-0.24}\pm0.05$	$A_I(ee) =$	$-0.13_{-0.12} \pm 0.01$	$R_{K_{S}^{0}} =$	
	$B^0 \to K^0_S e^+ e^-$	23.6	$5.9^{+4.0}_{-3.1}$	$0.33^{+0.23}_{-0.18}\pm0.02$	$-0.24^{+0.23}_{-0.19}\pm0.01$		$1.52^{+1.23}_{-0.97} \pm 0.10$	
whole q^2	$B^+ \to K^+ \mu^+ \mu^-$	27.8	$137.0^{+14.2}_{-13.5}$	$6.24^{+0.65}_{-0.61}\pm0.31$	$A_I(\mu\mu) =$		$R_{K+} =$	
	$B^0 \to K^0_S \mu^+ \mu^-$	18.2	$27.3_{-5.9}^{+6.6}$	$2.0^{+0.5}_{-0.4}\pm0.1$	$-0.15^{+0.09}_{-0.08}\pm0.01$	$-0.10^{+0.07} \pm 0.01$	$1.04^{+0.16}_{-0.15}\pm0.06$	$1.06^{+0.15}_{-0.14} \pm 0.07$
	$B^+ \to K^+ e^+ e^-$	29.1	$138.0^{+15.5}_{-14.7}$	$6.00^{+0.7}_{-0.6}\pm0.3$	$A_I(ee) =$	$-0.19_{-0.06} \pm 0.01$	$R_{K_{S}^{0}} =$	
	$B^0 \to K^0_S e^+ e^-$	18.2	$21.8^{+7.0}_{-6.1}$	$1.60^{+0.52}_{-0.45}\pm0.08$	$-0.24 \pm 0.11 \pm 0.01$		$1.25_{-0.44}^{+0.50} \pm 0.08$	

• lepton ID systematics : 2% for muon, 1.6 % for electron

- hadron ID systematics : 0.8% for K± and 1.6% for Ks

• O' systematics : 1.5%