

all-out Fighting Systematics in Charm CPV at Belle II

Beauty2019, Sep.30-Oct.4, Ljubljana, Slovenia

Outline

I will write something ...

BTW, this is a very preliminary version of the slides; no polishing of styles, etc.

Charm machines, old & new

Experiment	Year	\sqrt{s}	$\sigma_{acc}(D^0)$	L	$n(D^0)$
CLEO-c	2003-2008	3.77 GeV	8 nb	$0.5\mathrm{fb}^{-1}$	$4.0 imes 10^6$
BESIII	2010-2011	3.77 GeV	8 nb	$3\mathrm{fb}^{-1}$	$2.4 imes 10^7$
BaBar	1999-2008	10.6 GeV	1.45 nb	$500\mathrm{fb}^{-1}$	$7.3 imes 10^8$
Belle	1999-2010	10.6 - 10.9 GeV	1.45 nb	$1000{\rm fb}^{-1}$	$1.5 imes 10^9$
CDF	2001-2011	2 TeV	13 µb	$10{\rm fb}^{-1}$	$1.3 imes 10^{11}$
LHCb	2011	7 TeV	1.4 mb	$1 \mathrm{fb}^{-1}$	$1.4 imes 10^{12}$
LHCb	2012	8 TeV	$1.6\mathrm{mb^*}$	$2\mathrm{fb}^{-1}$	$3.2 imes 10^{12}$

Belle II 2019-202*

50 ab⁻¹

SuperKEKB Interaction Belle II detector Region electron ring positron ring injector to Linac positron damping ring $e^{-} \xrightarrow{7 \text{ GeV}} (\star) \xleftarrow{4 \text{ GeV}} e^{+}$

Belle II

 $\mathcal{L}_{\text{peak}} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ $\int^{\text{goal}} \mathcal{L} \, dt = 50 \text{ ab}^{-1}$

Belle II improvements

- vertex resolution
- K_{s}^{0} and π^{0} reconstruction efficiency
- K/π separation
- hadron & muon ID in the endcaps
- flavor tagging
 - (Belle) D* tagging only
 - (Belle II) D* & ROE tagging

Belle II K/π separation (Phase 3)

K, π from D^{*+} -tagged $D^0 \to K\pi$ decays

$M(D^0)$ plots (Belle II)

7

Flavor tagging for charm at Belle II

- D* tagging ("golden method")
 - $D^{*+} \rightarrow D^0 \pi_{\rm s}^+$
 - observables: $M(D^0)$, $\Delta M \equiv M(D^*) M(D)$
 - ΔM resolution at Belle II ~ 180 keV/ c^2 ; factor ~2 better than Belle

Rest-of-event (ROE) tagging

Flavor tagging not reconstructed in D^* decays

tag the flavor of D^0 with the charge of K^{\pm}

Flavor tagging — ROE

lower tagging efficiency (~1/4) is compensated by ~x3 higher \bigcirc production of non- D^* source

comparison of tagging methods

Flavour-tagging	Produced D^0	Mistagging		Efficiency
Method	N_{D^0}	ω	ϵ	$Q = \epsilon \ (1 - 2\omega)^2$
D^*	1	0.2%	80%	79.7%
ROE - criteria A	3	13.3%	26.7%	20.1%
ROE - criteria B	3	9.8%	16.8%	13.7%
ROE - criteria C	3	4.9%	15.9%	15.7%

nearly double the sample; but with higher mistagging and lower purity \bigcirc

Acp improvement with ROE

Prospects for Acp in Belle II

- Extrapolating Belle results to 50 ab^{-1}
- Systematic uncertainties
 - reducible sys. err. $\sigma_{\rm red}$ scale with luminosity
 - irreducible sys. err. $\sigma_{\rm irred}$ asym. K^0/\overline{K}^0 interactions in matter $(\approx 0.02 \%), K^0 CPV, etc.$

$$\sigma_{\text{Belle II}} = \sqrt{\left(\sigma_{\text{stat}}^2 + \sigma_{\text{red}}^2\right)^2}$$

In this talk, improvements in detector performance as well as ROE tagging are not included in the extrapolation.

$$\frac{\mathscr{L}_{\text{Belle}}}{50 \text{ ab}^{-1}} + \sigma_{\text{irred}}^2$$

Time-integrated CPV

• $A_{\rm CP}(D^0 \to V\gamma)$ • $A_{\rm CP}(D \to PP')$

Time-integrated A_{CP} (in Belle II) • A_{CP} vs. A_{raw} • $A_{\rm D}$ = production asymmetry $A_{\rm raw} = \frac{N(D^0 \to f) - N(\bar{D}^0 \to \bar{f})}{N(D^0 \to f) + N(\bar{D}^0 \to \bar{f})}$ $=A_{\rm FR}(\cos\theta^*)$ an odd function in $\cos \theta^*$ can be easily disentangled by $= A_{\rm D} + A_{\epsilon} + A_{\rm CP}$ $A_{\rm CP} = \frac{1}{2} \left[A_{\rm raw}^{\rm cor} (\cos \theta^*) + A_{\rm raw}^{\rm cor} (-\cos \theta^*) \right]$ $\mathcal{A}_{\rm CP} = \frac{\mathcal{B}(D^0 \to f) - \mathcal{B}(\overline{D}^0 \to \overline{f})}{\mathcal{B}(D^0 \to f) + \mathcal{B}(\overline{D}^0 \to \overline{f})}$ $A_{\rm FB} = \frac{1}{2} \left[A_{\rm raw}^{\rm cor} (\cos \theta^*) - A_{\rm raw}^{\rm cor} (-\cos \theta^*) \right]$ $\mathcal{A}_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + \mathcal{A}_{CP}^{\text{norm}}$ • A_{c} = efficiency asymmetry measured with enough tagged (D*, ROE) or self-tagged precision using CF decays

PRL 118, 051801 (2017)

• $A_{\rm CP}^{\rm SM}(D^0 \to V\gamma) \sim O(10^{-3})$

NP can enhance it to $O(10^{-2})$

- SM: dominated by long-range effect \rightarrow test of QCD
- use normalization modes to reduce systematic errors

$$A_{\text{raw}} = \frac{N(D^0 \to f) - N(\overline{D}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}^0 \to \overline{f})}$$
$$\mathcal{A}_{\text{CP}} = \frac{\mathcal{B}(D^0 \to f) - \mathcal{B}(\overline{D}^0 \to \overline{f})}{\mathcal{B}(D^0 \to f) + \mathcal{B}(\overline{D}^0 \to \overline{f})}$$

 $\mathcal{A}_{CP}^{\mathrm{sig}} = A_{\mathrm{raw}}^{\mathrm{sig}} - A_{\mathrm{raw}}^{\mathrm{norm}} + \mathcal{A}_{CP}^{\mathrm{norm}}$

PRL 118, 051801 (2017)

• $A_{\rm CP}^{\rm SM}(D^0 \to V\gamma) \sim O(10^{-3})$

NP can enhance it to $O(10^{-2})$

- SM: dominated by long-range effect \rightarrow test of QCD
- Measured by Belle w/ ~1 ab⁻¹

 \rightarrow dominated by stat. error

 $\begin{aligned} \mathcal{A}_{CP}(D^0 \to \rho^0 \gamma) &= +0.056 \pm 0.152 \pm 0.006 \\ \mathcal{A}_{CP}(D^0 \to \phi \gamma) &= -0.094 \pm 0.066 \pm 0.001 \\ \mathcal{A}_{CP}(D^0 \to \bar{K}^{*0} \gamma) &= -0.003 \pm 0.020 \pm 0.000 \end{aligned}$

PRL 118, 051801 (2017)

	$\sigma(l)$	$\mathcal{B})/\mathcal{B}$ ((%)	A_{C}	$_P$ (×
	ϕ	$ar{K}^{*0}$	ρ^0	ϕ	$ar{K}^*$
Efficiency	2.8	3.3	2.8	•••	• •
Fit parametrization	1.0	2.8	2.3	0.1	0.4
Background normalization	•••	0.3	0.6	•••	0.2
Normalization mode	0.0	0.0	0.1	0.5	0.0
External \mathcal{B} and \mathcal{A}_{CP}	2.0	1.0	1.8	1.2	0.0
Total	3.6	4.5	4.1	1.3	0.4

• $D^0 \rightarrow X\pi^0$ is a dominant background $\checkmark D^0$ mass is shifted (: a missing γ) $\checkmark \pi^0$ veto (slightly better for Belle II) • $M(D^0)$ resolution is crucial

$\rightarrow V\gamma$ systematics (Belle, 2017)

- $M(D^0)$ resolution is crucial
- Belle II MC study Belle II resolutions for both $M(D^0)$ and $\cos \theta_H$ are comparable to Belle \rightarrow we can extrapolate based on luminosity

 $D^0 \rightarrow V\gamma$ prospects

δA _{CP} on	Belle	
	1 ab-1	5 ab-1
$D^0 o ho \gamma$	±0.152±0.006	±0.07
$D^0 o \phi \gamma$	±0.006±0.001	±0.03
$D^0 o \overline{K}^{*0} \gamma$	±0.020±0.000	±0.01

- O(%) precision is expected for $A_{\rm CP}(D^0 \to V\gamma)$ at Belle II
- Statistical error will still dominate

Belle II (stat. err.)				
15 ab-1	50 ab-1			
±0.04	±0.02			
±0.02	±0.01			
±0.005	±0.003			

 $A_{CP}(D \rightarrow PP')$

• $A_{CP}^{SM}(D \rightarrow PP') \sim O(10^{-3})$

- ✓ not an automatic NP probe, ∵ uncertainties in hadronic matrix elements \checkmark symmetry (e.g. SU(3)_F) can predict patterns among different modes
- existing most precise measurements

Mode	A_{CP} [%]
$D^0 \to K^+ K^-$	$0.04 \pm 0.12 \pm 0.10$
$D^0 \to \pi^+ \pi^-$	$0.07 \pm 0.14 \pm 0.11$
$D^0 \to K^0_S K^0_S$	$-0.02 \pm 1.53 \pm 0.17$
$D^0 \to \pi^0 \pi^0$	$-0.03 \pm 0.64 \pm 0.10$
$D^+ \to K^0_S K^+$	$0.03\pm0.17\pm0.14$
$D^+ \to K^{0}_S \pi^+$	$-0.36 \pm 0.09 \pm 0.07$

→ Sum Rule test!

- LHCb, 2017
- LHCb, 2017
- **Belle, 2017**
- **Belle**, 2014
- LHCb, 2014
- **Belle**, 2012

 $A_{CP}(D \rightarrow PP')$

• $A_{CP}^{SM}(D \rightarrow PP') \sim O(10^{-3})$

✓ not an automatic NP probe, ∵ uncertainties in hadronic matrix elements \checkmark symmetry (e.g. SU(3)_F) can predict patterns among different modes → Sum Rule test!

key expectations

- $\checkmark A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = 0$ in the isospin limit
- $\checkmark A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$ enhanced to O(%) level due to large exchange diagram contribution (hence a nice place for early discovery)

 $|A_{CP}| \le 1.1 \%$ (95% CL) Nierste & Schacht (PRD, 2015)

✓ Belle II can do well with neutral particles (π^0 , η , η' , ρ^+) in the final state

- $\bullet A_{\rm CP}^{\rm SM}(D^0 \to K_{\rm S}^0 K_{\rm S}^0) \sim {\cal O}(1\%)$
 - ✓ promising for discovery
- Belle with 921 fb⁻¹
 - $\checkmark A_{\rm CP} = (-0.02 \pm 1.53 \pm 0.17)\%$
 - ✓ normalize to $K_{\rm S}^0 \pi^0$
 - ✓ CPV in K^0 is subtracted
 - $\checkmark \sigma_{\rm irred} \approx 0.02 \%$
- Belle II expectation $\checkmark \sigma_{A_{\rm CP}} = 0.23 \ \%$ at 50 ab⁻¹

A_Cp(1

- $A_{\rm CP}^{\rm SM}(D^+ \to \pi^+ \pi^0) = 0$
 - \checkmark a smoking gun for NP
- Belle with 921 fb⁻¹

 $\checkmark A_{\rm CP} = (2.31 \pm 1.24 \pm 0.23)\%$

 \checkmark normalize to $D^+ \rightarrow K_{\rm S}^0 \pi^+$

Belle II MC study (50 ab⁻¹)

 ✓ using D^{*+} tag for background suppression
 ✓ efficiency, background rejection, similar to Belle, using earlier recon S/W
 ✓ can expect further improvement with updated S/W

✓ can expect further improvement with upon $\sigma_{A_{CP}} \approx 0.17 \%$

$\rightarrow \pi^+ \pi^0$ $Q \equiv M(D^+ \pi^0) - M(D^+) - M(\pi^0)$

$A_{\rm CP}(D \rightarrow PP')$ Belle II prospects

Mode	\mathcal{L} (fb ⁻¹)	$A_{\rm CP}(\%)$ (Belle)	Belle II 50 ab^{-1}	_
$D^0 \to K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03	
$D^0 \to \pi^+ \pi^-$	976	$+0.55\ \pm 0.36\ \pm 0.09$	± 0.05	
$D^0 \to \pi^0 \pi^0$	966	$-0.03\ \pm 0.64\ \pm 0.10$	± 0.09	
$D^0 \to K^0_S \pi^0$	966	$-0.21~\pm 0.16~\pm 0.07$	± 0.02	
$D^0 o K^0_S K^0_S$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23	$A_{CP}^{SM} \sim 1\%$
$D^0 \to K^0_S \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	
$D^0 \to K^0_S \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09	
$D^0 \to \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 1.30$	± 0.13	
$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	
$D^0 \to K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33	
$D^+ \to \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04	
$D^+ \to \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17	$A_{\rm CP}^{\rm SM} = 0$
$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	CP
$D^+ \to \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	
$D^+ \to K^0_S \pi^+$	977	$-0.36\ \pm 0.09\ \pm 0.07$	± 0.02	
$D^+ \to K^0_S K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04	
$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29	_
$D_s^+ \to K_S^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05	

Time-dependent CPV

CPV in mixing CPV in mixing-decay interference

CPV and Mixing — a quick intro.

 $|M_{1,2}\rangle = p |M^0\rangle \pm q |\overline{M}^0\rangle$

 $|M_{\rm phys}^0(t)\rangle = (g_+(t) + z g_-(t)) |M^0\rangle - \sqrt{1 - z^2} \frac{q}{n} g_-(t) |\overline{M}^0\rangle$ $\left|\overline{M}_{\text{phys}}^{0}(t)\right\rangle = \left(g_{+}(t) - z g_{-}(t)\right)\left|\overline{M}^{0}\right\rangle - \sqrt{1 - z^{2}} \frac{p}{a} g_{-}(t)\left|M^{0}\right\rangle$ z = 0 if CP or CPT is conserved mixing parameters $x = \frac{\Delta m}{\Gamma}$ $y = \frac{\Delta \Gamma}{2\Gamma}$

Direct and Indirect CPV

$$\left| \begin{array}{c} \overline{A} \\ \overline{A} \\ \overline{A} \end{array} \right| \neq 1$$

$$\begin{vmatrix} q \\ - p \end{vmatrix} \neq 1$$

Direct CPV (decay)

Indirect CPV (mixing)

$Im(\lambda_f) \neq 0$ $\lambda_f = -\eta_{\rm CP} \left| \frac{q}{p} \right| \left| \frac{\overline{A}_f}{\overline{A}_f} \right| e^{i\phi} \neq 0$

Interference of mixing and decay

Time & Vertex resolution in Belle II

factor ~2 better than Belle and BaBar

• $\delta r_{xy} \sim 40 \ \mu m$

• $\delta t \sim 0.15$ ps

 $\begin{array}{c} t \ \text{resolution} \\ \text{Mean} & \text{RMS} \\ \hline \text{Belle II} & 6.5 \ \text{fs} & 135 \ \text{fs} \\ \hline \text{BaBar} & -0.48 \ \text{fs} & 271 \ \text{fs} \end{array}$

D^0 lifetime in Belle II (Phase 3) D^{*+} -tagged $D^0 \rightarrow K\pi$ decays (using 1/15 sample of Phase 3)

 $\tau_{D^0} = 370 \pm 40$ fs

410 fs

$$\begin{array}{l} \operatorname{Mixing} \& \operatorname{CPV} \operatorname{in} D^{0} \to K^{+} \pi^{-} (\operatorname{WS}) \\ & \frac{N(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma} t} \left\{ R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ & \frac{N(\overline{D}^{0} \to \overline{f})}{dt} \propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_{D} + \left| \frac{p}{q} \right| \sqrt{\overline{R}_{D}} (y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ & x' = x \cos \delta + y \sin \delta \qquad y' = y \cos \delta - x \sin \delta
\end{array}$$

$$\delta \qquad y' = y\cos\delta - x\sin\delta$$

		h9993f	
	Entries		87735
	Mean	0.494 ± 0	.001687
	Std Dev	0.4986 ± 0	.001193
	χ^2 / ndf	147	7.7 / 149
	Prob		0.5136
	p0	0.003345 ± 0	.000022
	p1	0.000154 ± 0	.000069
	p2	0.009691 ± 0	.000758
	cm	John	4
	211	ieai e	J
		175	ſ
	$\sigma_{\star} =$	= 133	IS
	l		
2	2.5	5 3	3.5
			$\Delta t/\tau_{\rm D}$
			11

Belle II MC (20 ab⁻¹) fit w/o CPV for R_D , x'^2 , y'

Mixing & CPV in $D^0 \rightarrow K^+ \pi^-$ (WS)

Belle II MC fit

Parameter	5 ab^{-1}	20 ab^{-1}	50
$\delta x'^2 \ (10^{-5})$	6.2	3.2	
$\delta y'~(\%)$	0.093	0.047	(
$\delta x' (\%)$	0.32	0.22	
$\delta y'~(\%)$	0.23	0.15	(
$\delta q/p $	0.174	0.073	(
$\delta\phi$ (°)	13.2	8.4	

- 0 ab^{-1}
- 2.0
- 0.029
- 0.13
- 0.097
- 0.043
- 5.4

no CPV

CPV allowed

Mixing & CPV in $D^0 \rightarrow K^0_S \pi^+ \pi^-$ (Dalitz)

- decay modeling
 - measured at **BESIII**

Data	stat.	sy	st.	Total	stat.	\mathbf{sy}	st.	Total
		red.	irred.			red.	irred.	
	$\sigma_x (10^{-2})$			$\sigma_y (10^{-2})$				
$976 {\rm ~fb^{-1}}$	0.19	0.06	0.11	0.20	0.15	0.06	0.04	0.16
5 ab^{-1}	0.08	0.03	0.11	0.14	0.06	0.03	0.04	0.08
50 ab^{-1}	0.03	0.01	0.11	0.11	0.02	0.01	0.04	0.05
	$ q/p (10^{-2})$			φ (°)				
$976 {\rm ~fb^{-1}}$	15.5	5.2 - 5.6	7.0-6.7	17.8	10.7	4.4 - 4.5	3.8 - 3.7	12.2
5 ab^{-1}	6.9	2.3 - 2.5	7.0-6.7	9.9-10.1	4.7	1.9-2.0	3.8 - 3.7	6.3 - 6.4
50 ab^{-1}	2.2	0.7 - 0.8	7.0-6.7	7.0-7.4	1.5	0.6	3.8 - 3.7	4.0-4.2

• Systematic error will be dominated by D^0

✓ should improve with strong phase difference to be

Summary

• I will write something here ...

33

Thank you!

