LFV τ searches at the Belle and Belle II experiments

- Alberto Martini DESY (Deutsches Elektronen-Synchrotron)
 - on behalf of the Belle II collaboration
 - Tau2023 conference 5 December 2023

Status of the τ LFV searches at B-factories

Lepton Flavor Violation (LFV) is allowed in various extensions of the Standard Model (SM) but it has never been observed

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Advantages of studying τ physics at B-factories:

- τ produced in pairs
- Well defined initial state energy
- Clean environment
- High hermeticity of the detector

τ LFV channels

Good determination of τ mass and energy + few SM background sources

Irreducible physics backgrounds + bad τ mass and energy determination

mSUGRA + seesaw

SUSY Higgs

Ref: https://arxiv.org/ abs/hep-ph/0702136

17th International Workshop on τ Lepton Physics: τ 2023 -

τ LFV channels

Good determination of τ mass and energy + few SM background sources Golden channel: $\tau \rightarrow \mu \mu \mu$ experimentally the most accessible

Irreducible physics backgrounds + bad τ mass and energy determination Golden channel: $\tau \rightarrow \mu \gamma$ as the Highest non-SM BF contribution

An observation would be a clear signature of NP!

	Physics models			
	SM + v mixing			
	SM+heavy Majorana v_R			
	Non-universal Z'			
	SUSY SO(10)			
	mSUGRA + seesaw			
Ref: <u>https://arxiv.org/</u> abs/hep-ph/0702136	SUSY Higgs			

17th International Workshop on τ Lepton Physics: τ 2023 -

τ LFV channels

Good determination of τ mass and energy + few SM background sources Golden channel: $\tau \rightarrow \mu \mu \mu$ experimentally the most accessible

Irreducible physics backgrounds + bad τ mass and energy determination Golden channel: $\tau \rightarrow \mu \gamma$ as the Highest non-SM BF contribution

An observation would be a clear signature of NP!

Analysis motivations: $\tau \rightarrow IV^{0}$

Decay channel forbidden in the SM but allowed in several new physics scenarios

Unparticle model

Ref: https://arxiv.org/pdf/hep-ph/ 0703260.pdf

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Leptoquark model

- Training: 11 input variables for $I\omega$, 9 input variables for others

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

No significant excess found \rightarrow set ULs at 90% CL by counting approach

Mode	arepsilon~(%)	$N_{ m BG}$	$\sigma_{ m syst}~(\%)$	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^\pm \to \mu^\pm \rho^0$	7.78	$0.95 \pm 0.20 (stat.) \pm 0.15 (syst.)$	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$ au^{\pm} ightarrow \mu^{\pm} \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^\pm \to e^\pm \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^{\pm} ightarrow \mu^{\pm} \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9
$\tau^\pm \to e^\pm \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4
$\tau^{\pm} ightarrow \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9
$\tau^{\pm} ightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \to e^{\pm} \overline{K}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7

 $B(\tau \to eV^0)$ $B(\tau \to \mu V^0)$

Analysis results for $\tau \rightarrow V^0$ @Belle

$$< (1.7 - 2.4) \times 10^{-8}$$

 $< (1.7 - 4.3) \times 10^{-8}$

World best result! ~30% improvement wrt previous results!

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Results for $\tau \rightarrow |\phi|$ @Belle II

Search for LFV two-body decay $\tau \rightarrow l + \alpha$ (I = e, μ) α is an invisible gauge boson that can be predicted by several NP models \rightarrow LFV Z', **light ALP candidate**, more...

Belle II

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville

$\tau \rightarrow l\alpha$ motivation

Best upper limits on $B(\tau \rightarrow l\alpha)/B(\tau \rightarrow l\nu\bar{\nu})$ from ARGUS (1995, 476 pb⁻¹)

$\tau \rightarrow l \alpha$ analysis @Belle II

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

ARGUS analysis approach is adopted \rightarrow definition of pseudo-rest (ps) frame

-+ Data

1.2

1.2

 X_{μ}

1.4

1.6

-+ Data

1.4

 $\tau \rightarrow \mu \nu \overline{\nu}$

Other

1.6

0.8

0.8

Xe

τ→eν⊽

Other

Results for $\tau \rightarrow l \alpha @$ Belle II

95% C.L. upper limits using the CLs method \rightarrow no significant excess in 62.8 fb⁻¹ of data (2019-20)

Ref: <u>https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.181803</u>

Analysis of $\tau \rightarrow 3\mu$ @Belle II

Best upper limits on $\tau \rightarrow 3\mu$ from Belle: 2.1 x 10⁻⁸ @90% CL with 782 fb⁻¹ \rightarrow Belle II is already competitive with 434 fb⁻¹

Closed signal side kinematics

- •No physical backgrounds
- •Tight signal region \rightarrow large background reduction using $\Delta E_{3\mu} \equiv E_{\tau sig} - E_{beam}$ and $M_{\tau 3\mu}$

Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Analysis of $\tau \rightarrow 3\mu$ @Belle II

Best upper limits on $\tau \rightarrow 3\mu$ from Belle: 2.1 x 10⁻⁸ @90% CL with 782 fb⁻¹ \rightarrow Belle II is already competitive with 434 fb⁻¹

Closed signal side kinematics

- •No physical backgrounds
- •Tight signal region \rightarrow large background reduction using $\Delta E_{3\mu} \equiv E_{\tau sig} - E_{beam}$ and $M_{\tau 3\mu}$

Two analysis approaches:

- Cut based with 3x1 topology:
 - muon identification cuts optimised as a function of the track momentum

- Inclusive-BDT approach:
 - Selection and background rejection based on BDT
 - Inclusion of 3x1 and 1x1 topologies

Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Results for $\tau \rightarrow 3\mu$ @Belle II: inclusive approach

Analysis selection and results: inclusive approach

<u>GBoost BDT trained on a statistics of 4 ab⁻¹ using 32 variables:</u>

• Inputs from: signal τ ; event tag side; event shape and kinematics

 $\varepsilon_{sig} = 20.42 \pm 0.06\% \sim 3x$ larger than Belle & Expected BKG: $0.5^{+1.4}_{-0.5}$ events

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Results for $\tau \rightarrow 3\mu$ @Belle II: inclusive approach

Analysis selection and results: inclusive approach

<u>GBoost BDT trained on a statistics of 4 ab⁻¹ using 32 variables:</u>

• Inputs from: signal τ ; event tag side; event shape and kinematics

 $\varepsilon_{sig} = 20.42 \pm 0.06\% \sim 3x$ larger than Belle & Expected BKG: 0.5^{+1.4}_{-0.5} events

17th International Workshop on *τ* Lepton Physics: *τ*2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

- B-factories are a perfect environment for LFV searches on τ sector
 - Belle and Belle II are also a τ -factories!

• Several new high profile measurements: • $\tau \rightarrow IV^0$ @Belle & Belle II, $\tau \rightarrow I\alpha$ and $\tau \rightarrow 3\mu$ @Belle II

More results to come so stay tuned!

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II -

Summary

Emergency slides!!

17th International Workshc

Louisville Kentucky USA

Physics: τ analyses

