The tau lepton mass measured at Belle II

Radek Žlebčík (on behalf of the Belle II Collaboration)

Dec 4, 2023 Louisville

Particle Zoo

 m_e

 m_{μ}

 m_{τ}

=

=

=

Masses of leptons

 $(105.6583755 \pm 0.0000023) \text{ MeV}$

 $(1776.86 \pm 0.12) \text{ MeV}$

PDG 2022

Standard Model of Elementary Particles and Gravity

page 2

$2R_\infty h$ $m_{ m e}=$ $c lpha^2$ 1.777 GeV/c² 105.7 MeV/c² -1 0.511 MeV/c² 1/2 ⁻¹ ^{1/2} **e** 1/2 tau muon electron 0.3 x 10⁻⁹ 22 x 10⁻⁹ 68000 x 10⁻⁹ 36 x 10⁻⁹

TAU2023 | 4 December 2023 | Radek Žlebčík

Relative precisions of masses

Needed precision

300 USD

Lepton flavor universality & tau lepton mass

Is the fraction of tau decays to electron consistent with SM?

Lepton flavor universality & tau lepton mass

Tau lepton mass is exciting on its own!

Previous measurements

Methods

Give me a scale!

τ factories

Source	$\Delta m_{\tau} \; ({\rm MeV}/c^2)$
Theoretical accuracy	0.010
Energy scale	$+0.022 \\ -0.086$
Energy spread	0.016
Luminosity	0.006
Cut on number of good photons	0.002
Cuts on PTEM and acoplanarity angle	0.05
mis-ID efficiency	0.048
Background shape	0.04
Fitted efficiency parameter	+0.038
Total	-0.034 + 0.094
	-0.124

BES III 70% Phys.Rev.D 90 (2014)

Systematic uncertainties of the tau mass

B factories

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

BaBar 98% Phys.Rev.D 80 (2009)

Source of systematics	σ , MeV/ c^2
Beam energy and tracking system	0.26
Edge parameterization	0.18
Limited MC statistics	0.14
Fit range	0.04
Momentum resolution	0.02
Model of $\tau \rightarrow 3\pi \nu_{\tau}$	0.02
Background	0.01
Total	0.35

Belle 74% Phys.Rev.Lett. 99 (2007)

BES III method

BESIII (τ factory)

Source	$\Delta m_{\tau} \; ({\rm MeV}/c^2)$
Theoretical accuracy	0.010
Energy scale	$^{+0.022}_{-0.086}$
Energy spread	0.016
Luminosity	0.006
Cut on number of good photons	0.002
Cuts on PTEM and acoplanarity angle	0.05
mis-ID efficiency	0.048
Background shape	0.04
Fitted efficiency parameter	+0.038
Total	$+0.094 \\ -0.124$

BES III 70% Phys.Rev.D 90 (2014)

Compton-scattering of laser light used to measure beam energies.

Challenges for B factories

BaBar (B factory)

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

BaBar 98% Phys.Rev.D 80 (2009)

Pseudo-mass

Belle II

Unprecedented luminosity, 4.7x10³⁴ cm⁻²s⁻¹ world record

- Belle II at asymmetric-energy SuperKEKB e+e- collider
- B & charm & tau factory $\sigma_{bb} \sim \sigma_{cc} \sim \sigma_{ au au} \sim 1 \; {\rm nb}$
- Clean environment of ee collisions:
 - \rightarrow Efficient reconstruction neutrals
 - \rightarrow Missing energy
 - \rightarrow Interaction vertex
- Data taking is getting restarted (LS1 July 2022 - November 2023)
- Accumulated 424 fb⁻¹ (190 fb⁻¹ used in the tau-mass analysis)

The z-axis of the coordinate system points towards electron momentum

Final-state momentum scale

- Calibration of track momenta using $D^0 \,{\rightarrow}\, K\pi$ as standard candle
- Momentum SFs are derived by comparing D⁰ peak position with PDG value
 → SFs function of charge & cos θ
- Systematic uncertainties:
 - \rightarrow m(D⁰) PDG uncertainties
 - \rightarrow peak position modeling
 - \rightarrow detector misalignment

Tau mass unc. from momentum-scale 0.39 MeV (BaBar) → 0.07 MeV (Belle II)

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$$
$$m_{\tau}^2 = (p_{3\pi} + p_{\nu})^2$$

Calibration of the collision energy

Y4S resonance

Mean B meson energy biased towards $M(Y_{4S})$ due to beam energy smearing

Time dependence of collision energy

Belle II results

Source	$\frac{\text{Uncertainty}}{\left[\text{MeV}/c^2\right]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

Belle II results

Conclusions

$$m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \,\mathrm{MeV}/c^2$$

- \bullet Belle II $\,m_{\tau}$ determination has much higher accuracy than Belle / BaBar
- Belle II achieved even slightly better precision than BESIII (tau-factory)
- \bullet Substantial part of the m_{τ} uncertainty comes from external inputs, e.g. Y4S resonance shape
 - \rightarrow plan to reduce external-input dependence