

Time-dependent CP violation in B⁰ decays

S. Bahinipati Indian Institute of Technology Bhubaneswar

16th International Conference on Heavy Quarks and Leptons (HQL2023) TIFR [November 28 - December 2, 2023]

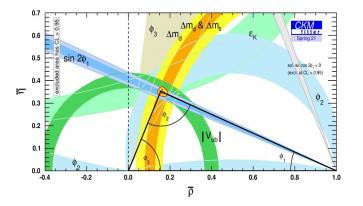
Talk Outline

- Introduction: Time-dependent CP violation
- Detectors: Belle II, LHCb
- Recent results from Belle II

• Recent results from LHCb

 $\begin{array}{l} B^0 \rightarrow J/\psi \ K_s \\ B_s \rightarrow J/\psi \ \Phi \\ B_s \rightarrow \Phi \end{array}$

• Summary and Outlook

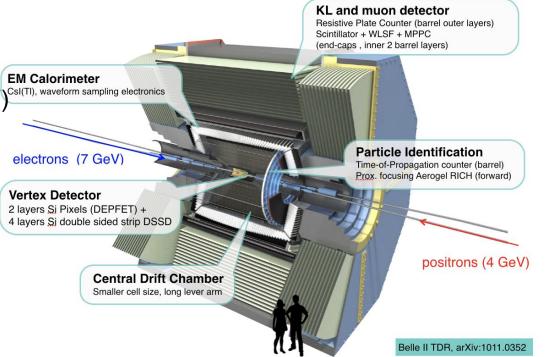

Time-dependent CP violation

- CP violation in Standard Model (SM) is manifested due to a complex phase in the CKM matrix.
- Unitarity of the CKM matrix leads to triangles in the complex (ρ , η) plane.
- Unitarity Triangles are closed in the SM. Any deviation would be a hint for New Physics.
- Precise measurements by Belle, Belle II, LHCb and others lead to improved precision in the measurement of the angles.

(HFLAV 2021)

 $\beta = \phi_1 = (22.2 \pm 0.7)^\circ$

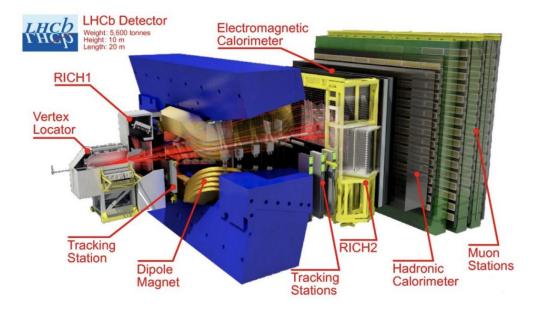
$$\Phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \cong \arg(V_{td})$$


Time-dependent CP violation

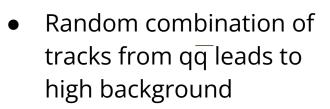
 B^0 CP violation in meson oscillation: *inter*[*ference*] $\Gamma(P^0(\rightsquigarrow\bar{P}^0)\to f)(t)\neq \Gamma(\bar{P}^0(\rightsquigarrow\bar{P}^0)\to f)(t)$ $A_{CP}(t) = \frac{\Gamma_{P^0(t) \to f} - \Gamma_{\bar{P}^0(t) \to f}}{\Gamma_{P^0(t) \to f} + \Gamma_{\bar{P}^0(t) \to f}}$ \bar{B}^0 = **S**_{CP} sin(Δ m_dt) - **C**_{CP} cos(Δ m_dt) Time-dependent CPV Mixing-induced CP Direct CP asymmetry asymmetry In Standard Model, C= 0, S = $sin2\phi_1$

Belle and Belle II

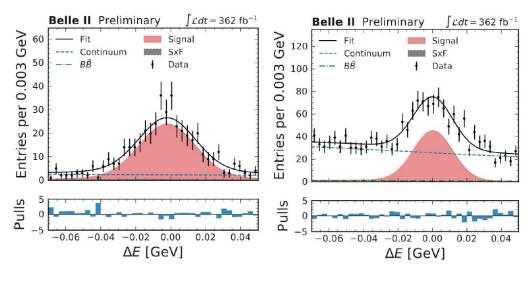
- Asymmetric e⁺-e⁻ colliders- B factories, also charm and τ factories
- Belle and Belle II: e⁺ (3.5 GeV)^{CsI(TI), waveform sampling electronics} e⁻ (8 GeV) -> e⁺ (4 GeV) e⁻(7 GeV)
- Improved vertex resolution allows lower boost
- 428 fb⁻¹ (362 fb⁻¹ at Y(4S)) collected at Belle II so far; Goal: 50 ab⁻¹


Luminosity Frontier experiment

LHCb


Energy Frontier experiment

- Huge *b* cross-section
- Excellent vertex resolution and particle identification
- Events with high multiplicity, reconstruction of neutrals is challenging
- 9 fb⁻¹ accumulated during Run 1-2 (2010-2018)
- Run 3 started in 2022 with an upgraded LHCb detector, goal 50 fb⁻¹



EPS-HEP 2023

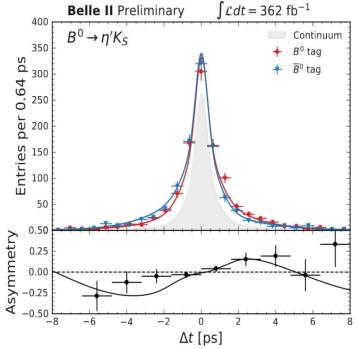
 $B^0 \rightarrow \eta' K_{c}$

- Event-shape MVA used to suppress this combinatorial background
- Signal yield = 829 +/- 15 events
- Background △t shape controlled from sideband

η' → **η**ππ

η' → ργ

 $\Delta E = E_B^* - E_{\rm beam^{7}}^*$

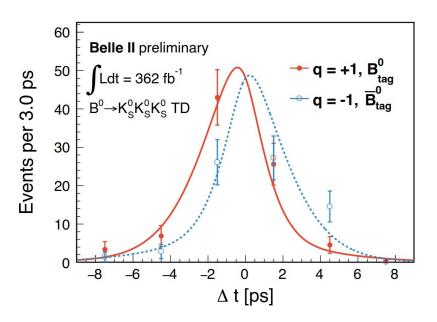

 $B^0 \rightarrow \mathbf{\eta}' K_s$

- S_{CP} and C_{CP} extracted from fit in signal region with background parameters fixed from first step
- Fit validated with $B^{\pm} \rightarrow \eta' K^{\pm}$

 $C_{CP} = 0.19 \pm 0.08 \pm 0.03$ $S_{CP} = 0.67 \pm 0.10 \pm 0.04$

HFLAV:
$$C_{CP} = -0.05 \pm 0.04$$

 $S_{CP} = 0.63 \pm 0.06$



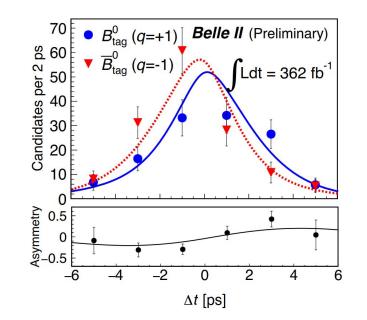
8

MORIOND 2023

- Unique at Belle II
- Major challenge: no prompt tracks→vertex reconstruction from Ks trajectories
- No contributions from opposite-CP backgrounds

$$C_{CP} = -0.07 \pm 0.20 \pm 0.05$$

$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$


HFLAV: $C_{CP} = -0.15 \pm 0.12 S_{CP} = -0.83 \pm 0.17$

$B^0 \rightarrow \Phi K_s$

- Results competitive with best measurements
- Two prompt tracks from $\Phi \rightarrow K^+K^-$: Clean signature
- Major challenge: non-resonant backgrounds with opposite-CP

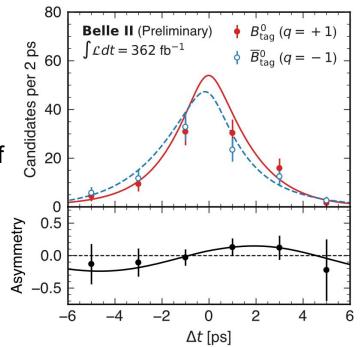
$$C_{CP} = -0.31 \pm 0.20 \pm 0.05$$

$$S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$$

arXiv:2307.02802

HFLAV:
$$C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$$

 $B^0 \rightarrow K_s \pi^0$


- First Belle II measurement of CP asymmetries in the decay, Results competitive with previous measurements
- Fitting to the proper decay-time distribution of a sample of 415 signal events

$$C_{CP} = -0.04 \pm 0.15 \pm 0.05$$

$$S_{CP} = 0.75^{+0.20}_{-0.23} \pm 0.04$$

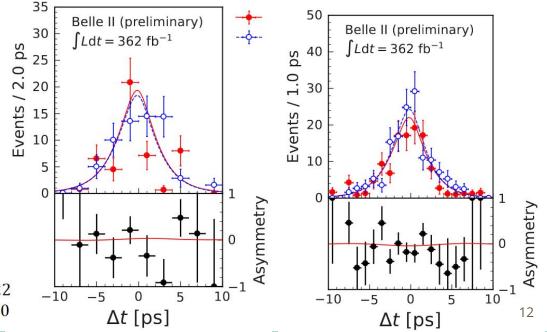
PRL 131, 111803 (2023)

arXiv:2305.07555

HFLAV: $C_{CP} = 0.01 \pm 0.10 S_{CP} = 0.57 \pm 0.17$

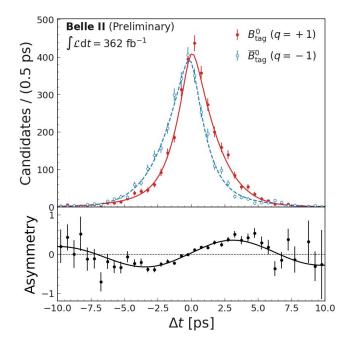
$B^0 \rightarrow K_s \pi^0 \gamma$

- Consider exclusive decay to $K^{*0}(\rightarrow K_{s}\pi^{0})\gamma$ and inclusive decay to $K_{s}\pi^{0}\gamma$ separately
- Polarization of photon strongly constrains flavor
- SM: *S*_{*CP*} helicity suppressed NP processes could contribute to a significant mixing-induced CPV


HFLAV:

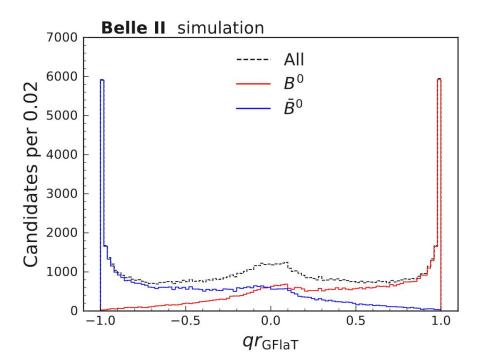
 $\begin{array}{ll} K^{*0}\gamma \colon & C_{CP} = -0.04 \pm 0.14 \; S_{CP} = -0.16 \pm 0.22 \\ K_S \pi^0 \gamma \colon & C_{CP} = -0.07 \pm 0.12 \; S_{CP} = -0.15 \pm 0.20 \end{array}$

EPS-HEP 2023


$$\begin{array}{l} C_{CP} = 0.10 \pm 0.13 \pm 0.03 \\ S_{CP} = 0.00^{+0.27+0.03}_{-0.26-0.04} \end{array} \qquad \begin{array}{l} C_{CP} = -0.06 \pm 0.25 \pm 0.07 \\ S_{CP} = 0.04^{+0.45}_{-0.44} \pm 0.10 \end{array}$$

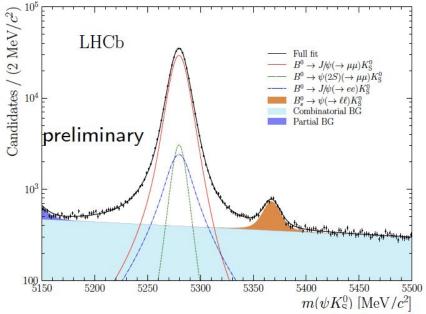
Most precise result till date

- SM measurement with large BF and experimentally clean signature
- Validate Flavor Tagger (FT) performance
- New flavor tagger (GFIaT) based on graph neural network (GNN), which uses inter-relational information between particles, developed in Belle II
- ~8% reduction in statistical uncertainty due to a GFIaT


 $C_{CP} = -0.035 \pm 0.026 \pm 0.012$ $S_{CP} = 0.724 \pm 0.035 \pm 0.014$ EPS-HEP 2023 arXiv:2302.12898 (190 fb⁻¹)

HFLAV: $C_{CP} = 0.000 \pm 0.020 S_{CP} = 0.695 \pm 0.019$

- Conventional FT:
- GFIaT: ϵ_{tag} =31.68±0.45±0.41%
- ~18% more effective data due to increase in tagging efficiency compared to conventional flavor tagger!

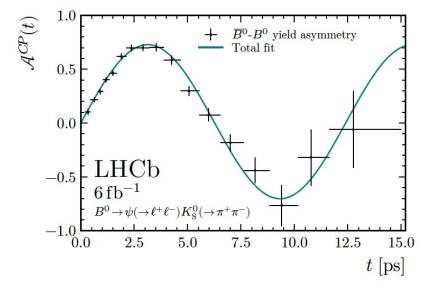

- New LHCb Run 2 (6 fb⁻¹) results using $B_d \rightarrow J/\psi K_s$ (both muons and electrons) and $B_d \rightarrow \psi' K_s$ Tagged time dependent analysis to determine sin2 β
- Using Run 1 (3 fb^{-1}) + Run 2 data:

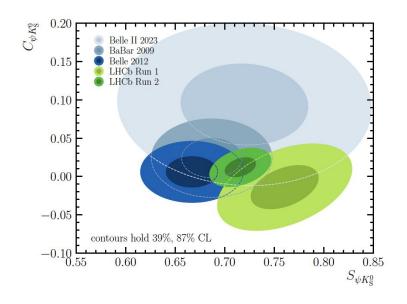
$$egin{aligned} S_{\psi K_{
m S}^0} &= 0.717 \pm 0.013 \, {
m (stat)} \pm 0.008 \, {
m (syst)} \ C_{\psi K_{
m S}^0} &= 0.008 \pm 0.012 \, {
m (stat)} \pm 0.003 \, {
m (syst)} \end{aligned}$$

2309.09728 [hep-ex]

(Submitted to PRL)

LHCB-PAPER-2023-013


(Simultaneous fit of 3 decay modes, $B^0 \rightarrow J/\psi$ (l^+l^-) K_s and $B^0 \rightarrow \psi(2S)$ ($\mu^+\mu^-$) K_s, where $l = e \text{ or } \mu$



- Small CP violation asymmetry observed
- Consistent with SM predictions
- Using Run 1 (3 fb⁻¹) + Run 2 data, using combination of measurements:

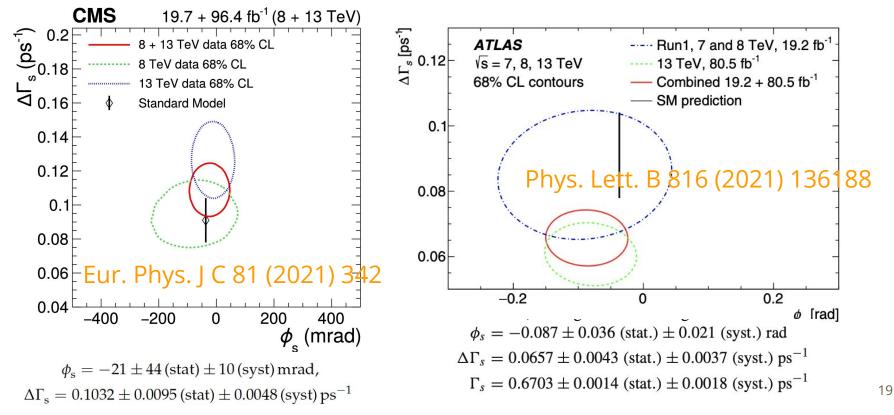
$$S_{\psi K_{\rm S}^0}^{\rm Run\ 1\&2} = 0.724 \pm 0.014 \,(\text{stat+syst})$$
$$C_{\psi K_{\rm S}^0}^{\rm Run\ 1\&2} = 0.004 \pm 0.012 \,(\text{stat+syst})$$

HFLAV Summer 2023 $\sin(2\beta) \equiv \sin(2\phi_1)$ PRELIMINARY BaBar J/ψ K_S PRD 79 (2009) 072009 0.657 ± 0.036 ± 0.012 BaBar J/WK 0.694 ± 0.061 ± 0.031 PRD 79 (2009) 072009 BaBar w(2S) Ke 0.897 ± 0.100 ± 0,036 PRD 79 (2009) 072009 Belle J/ψ K_S PRL 108 (2012) 171802 0.670 ± 0.029 ± 0.013 Belle J/w K. $0.642 \pm 0.047 \pm 0.021$ PRL 108 (2012) 171802 Belle w(2S) Ks 0.718 ± 0.090 ± 0.031 PRD 77 (2008) 091103(R) LHCb Run 1 J/ψ K_S JHEP 11 (2017) 170 0.750 ± 0.040 LHCb Run 1 w(2S) K_s $0.840 \pm 0,100 \pm 0.010$ JHEP 11 (2017) 170 LHCb Run 2 J/W Ks LHCb-PAPER-2023-013 $0.720 \pm 0.014 \pm 0.007$ LHCb Run 2 w(2S) K_S LHCb-PAPER-2023-013 0.647 ± 0.053 ± 0.018 World Average 0.708 ± 0.011 HFLAV 0.4 0.5 0.6 0.7 0.8 0.9 1

LHCb Run 2 result most precise to date

$B_s \rightarrow J/\psi \phi$

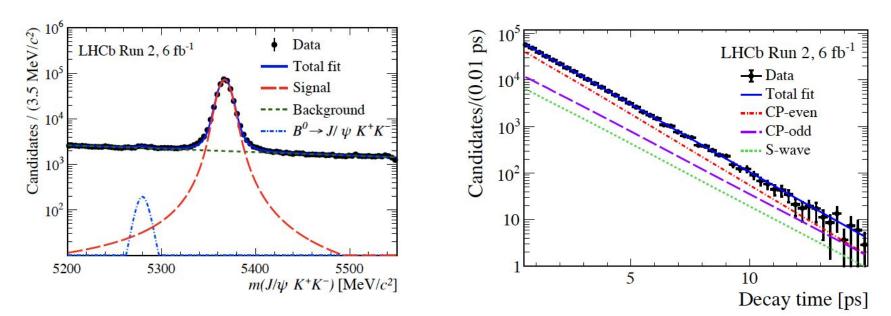
• Golden mode used by all LHC experiments, excluding ALICE


 Since B_s → J/ψ φ is not a CP eigenstate time-dependent angular analysis needed to determine φ_s $\langle M^0 | H | \overline{M^0}
angle = M_{12} - rac{i}{2} \Gamma_{12}$ $\langle \overline{M^0} | H | M^0
angle = M_{12}^* - rac{i}{2} \Gamma_{12}^*$

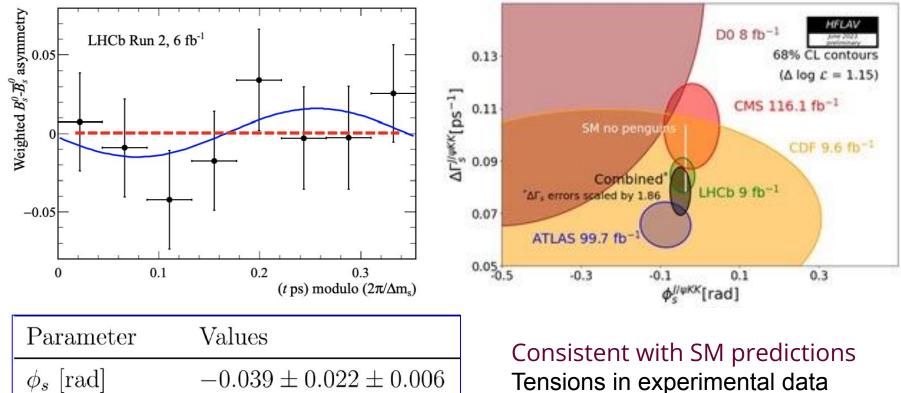
H is the 2 × 2 effective Hamiltonian governing neutral meson mixing.

Primary Vertex B_s ϕ K⁺

$$\phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
$$\Delta\Gamma_s = \Gamma_L - \Gamma_H$$
$$\Delta m_s = M_H - M_L$$

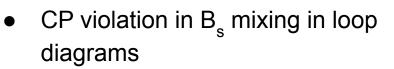


Full Run 2 dataset used

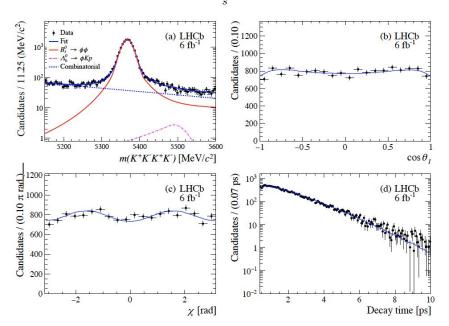

2308.01468 [hep-ex]

(Submitted to PRL)

LHCB-PAPER-2023-016


Current world average: $B_s \rightarrow J/\psi \phi$ Preliminary HFLAV 2023

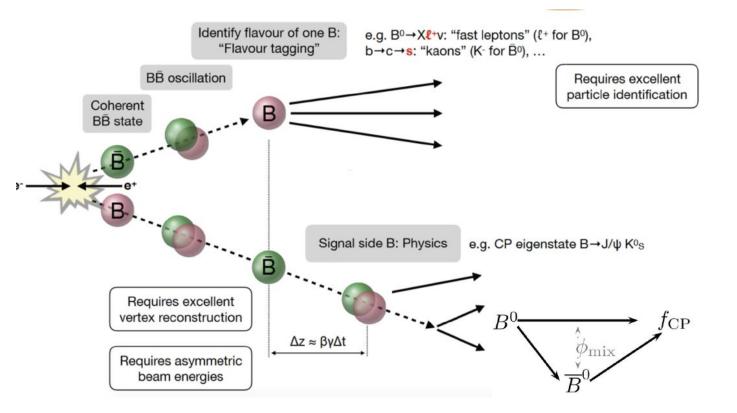
21


PRL 131, 171802 (2023)

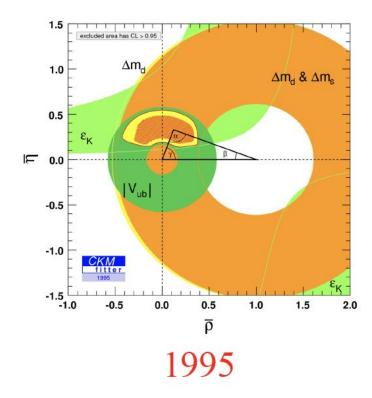
- CP violation in SM predicted to be small, $\phi_s = -36.96 \, {}^{+0.72}_{-0.84} \, \mathrm{mrad}$ [Phys. Rev. D, 84 (2011), Article 033005]
- Tagged time dependent angular analysis to determine φ
- Using Run 1 + 2 data (6 fb⁻¹), LHCb measured:

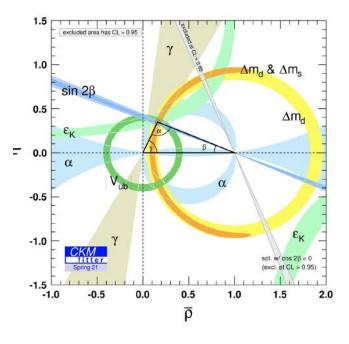
 $\phi_s^{s\overline{s}s} = -0.074 \pm 0.069 \,\mathrm{rad}$

arXiv: 2304.06198

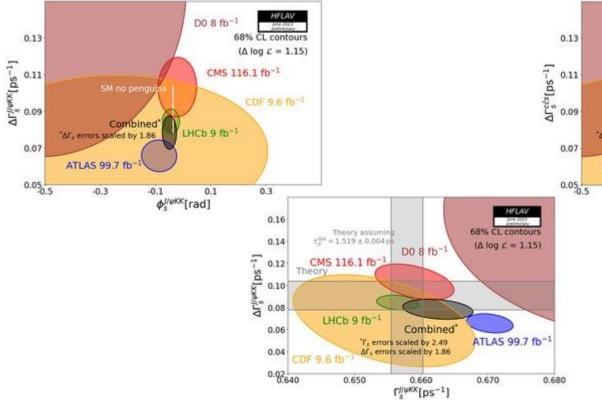


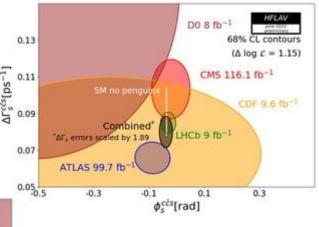
Summary and Outlook


- CP violation is being tested at several experiments, such as Belle II/LHCb/BESIII. Exciting results to follow in future.
- Current focus is search for new physics corrections to SM CP violation.
- No evidence for new CPV physics so far.
- Large datasets will allow precision measurements.



Time-Dependent CP violation




Unitarity Triangle - Timeline

Preliminary HLAV 2023 update

