

Rare decays at Belle & Belle II

Seema Choudhury Iowa State University, USA (on behalf of the Belle & Belle II Collaborations)

Dec 01 2023

16th International Conference on Heavy Quarks and Leptons (HQL 2023) 28 November - 2 December, 2023 TIFR, Mumbai, India

Motivation

- Rare decays involving $b \rightarrow s(d)$ quark level transitions are FCNC processes
- These decays are forbidden at tree level in the SM and occur through electroweak loop diagrams

- Resulting B decays are rare having $\mathcal{B}_{\mathrm{SM}} = \mathcal{O}(10^{-7} 10^{-4})$
- Amplitude from the NP contribution can interfere with the SM amplitude, altering physical observables like: lepton-flavor-universality ratios, isospin asymmetries, forward-backward asymmetries, total or differential branching fractions, angular observables, etc
- Many opportunities to probe the SM and explore the BSM physics

- Asymmetric e^+ (3.5 GeV) e^- (8 GeV) collider
- Collected 711 fb⁻¹ at $\Upsilon(4S)$ resonance
- Data taken from 1999 to 2010
- Collected 1 ab⁻¹ of data

- Asymmetric e^+ (4 GeV) e^- (7 GeV) collider
- So far collected 362 fb⁻¹ at $\Upsilon(4S)$ resonance
- Data taken between 2019 2022
- Recorded 424 fb⁻¹ of data: \sim equivalent to BaBar and 1/2 of Belle data sample
- Aims to collect multi-ab⁻¹ of data

Advantages of Belle & Belle II for rare decays

- Low background environment
- Good particle identification and performance
- PID performance of Belle II is similar to Belle
- High photon detection efficiency

Semileptonic tagging Partial knowledge of B_{tag} kinematics $\mathcal{O}(2\%)$ @ ~5% purity

Inclusive tagging Indirect knowledge of B_{tag} kinematics $\mathcal{O}(100\%)$

- Good hermiticity: useful for the channels with missing energy
- B-tag reconstruction: Reconstruction of tag side B allows to infer the properties of the signal-side with missing energy, and also good control over background
- Full Event Interpretation (FEI) [Comput. Softw. Big Sci. 3 (2019) 6] algorithm using machine learning for Hadronic/semileptonic B_{tag} has high purity but low efficiency
- Inclusive tagging benefits has higher background contamination but higher efficiency

Efficiency

Outline

- Belle (711 fb⁻¹)
 - $B^+ \to K^+ \tau \ell$, $\ell = e \text{ or } \mu$
 - $B^0 \to K^{*0} \tau \tau$
- Belle II (189 fb⁻¹)
 - Towards R_{K^*} : $B \to K^* \ell \ell$, $\ell \ell = ee$ or $\mu \mu$
 - Inclusive $B \to X_s \gamma$
- Belle & Belle II (711 fb⁻¹ & 362 fb⁻¹)
 - Exclusive $B \to \rho \gamma$

[PRL 130 (2023) 261802] [PRD 108 (2023) L011102]

> [arXiv:2206.05946] [arXiv:2210.10220]

[EPS HEP 2023]

• Also see Roberta's talk on rare $B^+ \rightarrow K^+ \nu \overline{\nu}$ decay from Belle II [arXiv:2311.14647] Let's start with Penguin decays...

Introduction on $b \rightarrow s\ell\ell$ decays

- SM \mathcal{B} for $B \to K^{(*)}\ell\ell$ decay is $\mathcal{O}(10^{-7})$
- Test of LFU: R_{K^(*)}

$$\mathsf{R}_{\mathsf{K}^{(*)}} = rac{\mathcal{B}(B o \mathsf{K}^{(*)} \mu \mu)}{\mathcal{B}(B o \mathsf{K}^{(*)} ee)}$$

• According to SM this ratio should be 1 [EPJC **76**, 440 (2016)], as the coupling of lepton to gauge boson is independent of flavor

- $R_{K^{(*)}}$ results from LHCb [PRL 131 (2023) 051803] and Belle [JHEP 03 (2021) 105, PRL 126 (2021) 161801] are consistent with SM expectations
- LFU can uniquely tested using Belle II data

Towards R_{K^*} : $B \to K^* \ell \ell$ at Belle II

- Decay modes reconstructed: $B^0 \to K^{*0}(K^+\pi^-)\ell\ell$ and $B^+ \to K^{*+}(K^+\pi^0, K_S^0\pi^+)\ell\ell$
- Background from continuum and $B\overline{B}$ is suppressed using event shape, vertex quality, and kinematic variables in a BDT
- Performed 2D unbinned ML fit in $M_{
 m bc}$ and ΔE to extract the signal yield

• Observation of these decays is the first step towards LFU test (R_{K^*}) at Belle II

Introduction on $b ightarrow s au \ell$ and b ightarrow s au au decays

- $b \rightarrow s\tau \ell$ and $b \rightarrow s\tau \tau$ are expected to be more sensitive to NP which has a coupling proportional to lepton or only couples to the third generation
- According to theory [PRL 114 (2015) 091801]: violation of LFU predict LFV processes

- SM prediction is $\mathcal{O}(10^{-7})$ [PRL 120 (2018) 181802] for the $\tau\tau$ final state
- $b
 ightarrow s au au(\ell)$ are less studied compared to their $e \mu$ counterparts
- Experimentally challenging due to two or more neutrinos in the final state

• FEI Hadronic *B*-tagging (*B*_{tag})

- Signal side: $B \to K \tau \ell$, $\tau \to e \nu \overline{\nu}$, $\mu \nu \overline{\nu}$, $\pi \nu \ (\tau \to \rho \nu \text{ mode contribute } \sim 50\% \text{ to } \tau \to \pi \nu$, because of large \mathcal{B}), combined 46% \mathcal{B}
- Dominant background from semileptonic D decays $B^+ \to \overline{D^0}(\to K^+ \ell^- \overline{\nu_\ell}) X^+$ or semileptonic B decays $B^+ \to \overline{D^0}(\to K^+ X^-) X \ell^+ \nu_\ell$, are vetoed in $M_{K^+ \ell^-}$ around D^0 mass region
- Background is suppressed using BDTs having kinematic and topology of the $B_{\rm sig}$ and ECL energy from extra clusters (not associated with $B_{\rm sig}$ or $B_{\rm tag}$)

• Signal yield is extracted by unbinned extended ML fit to $M_{
m recoil}$: should peak at the mass of the au lepton

$$M_{\text{recoil}} = \sqrt{m_B^2 + m_{K\ell}^2 - 2(E_{\text{beam}}^* E_{K\ell}^* + p_{B_{tag}}^* p_{K\ell}^* \cos \theta)},$$

here, $p_{K\ell}^* = p_K^* + p_\ell^*$
$$\xrightarrow{B' \to K' \tau' \mu'} \xrightarrow{B' \to K' \tau' e'}$$

- Four channels:
 - 2 charge configurations \times 2 flavours

channel	N _{sig}	${\cal B}^{ m UL}~(10^{-5})$
$K^+ au^+ \mu^-$	-2.1 ± 2.9	< 0.59
$K^+ au^+ e^-$	1.5 ± 5.5	< 1.51
$K^+ au^- \mu^+$	2.3 ± 4.1	< 2.45
$K^+ \tau^- e^+$	-1.1 ± 7.4	< 1.53

• World's best limits for $B^+ o K^+ au \ell$ decays

[PRL 130 (2023) 261802]

$B^0 ightarrow K^{*0} \overline{ au au}$ at Belle

[PRD 108 (2023) L011102]

- FEI Hadronic *B*-tagging (*B*_{tag})
- $\tau^- \rightarrow e^- \overline{\nu_e} \nu_\tau, \mu^- \overline{\nu_\mu} \nu_\tau, \pi^- \nu_\tau$

- 6 different decay modes: $K^{*0}e^+e^-$, $K^{*0}e^\mp\mu^\pm$, $K^{*0}\mu^+\mu^-$, $K^{*0}e^\mp\pi^\pm$, $K^{*0}\mu^\mp\pi^\pm$, $K^{*0}\pi^+\pi^-$
- $B^0 \to D^{(*)-}(K^{*0}\pi^-(\pi^0))\ell^+\nu_\ell$ background for $K^{*0}\pi^+\pi^-$ and $K^{*0}\ell^{\pm}\pi^{\mp}$ are rejected by $M_{K^{*0}\pi^-} \notin [1.84 1.94] \text{ GeV}/c^2$
- Signal yield is extracted by binned extended ML fit to $E_{\rm ECL}^{\rm extra}$, sum of the energy from cluster not associated with $B_{\rm sig}$ or $B_{\rm tag}$, with a bin width of 0.1 GeV
- Fit result on data

$$\begin{split} N_{\rm sig} &= -4.9 \pm 6.0 \\ \mathcal{B}^{\rm UL} < 3.1 \times 10^{-3} \text{ at } 90\% \text{ CL} \end{split}$$

• First experimental limit on the decay $B^0 \to K^{*0} \tau \tau$

Radiative decays ...

Inclusive $B \rightarrow X_{\epsilon} \gamma$ at Belle II

- $B \rightarrow X_s \gamma$ is sensitive to non-SM effects [EPJC 77 (2017) 201]
- Photon-energy spectrum offers access to the mass of the b quark and the function describing its motion inside the *B* meson [PRL 127 (2021) 102001, EPJC 77 (2017) 201]
- Measurement is possible in clean environment of B factories ۰
- Fully inclusive measurement using hadronic B_{tag} ٠
- Knowledge of kinematic properties of B_{tag} allows to access photon energy in the B_{sig} frame, E_{γ}^{B}
- Signal yield is extracted by fit to tag-side $M_{\rm bc}$ in bins of E_{γ}^{B} (8 bins with $E_{\gamma}^{B} > 1.8 \, \text{GeV}$
- $b \rightarrow d\gamma$ contribution accounted for by assuming same shape and efficiency as signal but suppressed by a factor $|V_{td}/V_{ts}|^2 \approx 4.3\%$

continuum, combinatorial, correctly rec. B

5.245 5.250 5.255 5.260 5.265 5.270 5.275 5.280 5.285

tag-side M_{bc} [GeV/c²]

Belle II preliminary

c = 189 fb

Events/(0.9 MeV/c²

In

150

50

 $1.8 < E_{\odot}^{B} < 2.0 \text{ GeV}$

•	Background	subtracted	distribution
---	------------	------------	--------------

E^B_{γ} (GeV) threshold	$B(10^{-4})$
1.8	$3.54 \pm 0.78 \pm 0.83$
2.0	$3.06 \pm 0.56 \pm 0.47$
2.1	$2.49 \pm 0.46 \pm 0.35$

- Provided partial $\mathcal B$ in bins of E_{γ}^B
- Results are consistent with the SM and world averages HFLAV (all tagging approached) = $(3.49\pm0.19)\times10^{-4}$
- Competitive with BaBar [PRD 77 (2008) 051103] result with hadronic tag method, on similar statistics

• $b \rightarrow d\gamma$ transition have one order of magnitude lower B compared to $b \rightarrow s\gamma$ processes and can be affected by NP independently

- $B \rightarrow \rho \gamma$ decay has been observed by the Belle [PRL 101 (2008) 200401] and BaBar [PRD 78 (2008) 112001]
- World average of isospin asymmetry lies about 2σ away from the SM expectation
- Reconstructed $\rho^0 \to \pi^+\pi^-$ and $\rho^+ \to \pi^+\pi^0$ for B^0 and B^+
- Experimentally challenging due to the presence of $B \rightarrow K^* \gamma$ background
- $M_{K\pi}$: invariant mass of ρ recalculated based on hypothesis that one of the π^+ is a K^+
- $M_{K\pi}$ helps separate $K^*\gamma$ background better compared to $M_{\pi\pi}$

[EPS HEP 2023]

• Simultaneous 3D fitting on $M_{\rm bc}$, ΔE , and $M_{K\pi}$ with extended unbinned ML to 6 independent data sets: B^+ , B^- , and B^0 in Belle and Belle II

- Measured the B, CP-asymmetry, and isospin asymmetry of $B \to \rho \gamma$ decays using Belle and Belle II combined data
- Improved isospin asymmetry A_l results, which is consistent with the SM prediction with 0.6 σ CL
- Most precise measurement of observables for $B
 ightarrow
 ho\gamma$ to date

Seema Choudhury

Belle

- Most stringent limit for $B \to K \tau \ell$ decays, $< (0.59 2.45) \times 10^{-5}$ at 90% CL
- First experimental limit on the decay $B \rightarrow K^{*0} \tau \tau$, $< 3.1 \times 10^{-3}$ at 90% CL

Belle II

- Heading towards R_K − R_{K*} measurement with larger data sample: B(B → K*ℓℓ) are consistent with PDG
- Inclusive $\mathcal{B}(B \to X_s \gamma)$ measurement in bins of E_{γ}^B , results are consistent with world averages
- World's most precise measurement of $B \to \rho \gamma$ decays branching fraction, isospin asymmetry and CP-asymmetry using Belle and Belle II data samples

Backup slides

Source	$K^+ \tau^+ \mu^-$	$K^+ \tau^+ e^-$	$K^+ \tau^- \mu^+$	$K^+ \tau^- e^+$
Additive (events)				
PDF shape (mean)	0.09	0.01	0.08	0.08
PDF shape (width)	0.02	0.08	0.04	0.07
PDF shape (f_{sig})	0.28	0.16	0.11	0.16
Linearity	0.03	0.04	0.02	0.04
Total	0.30	0.18	0.14	0.20
Multiplicative (%)				
B_{tag} calibration	5.9	5.9	5.9	5.9
Track reconstruction	1.1	1.1	1.1	1.1
Kaon identification	1.3	1.4	1.3	1.3
Lepton identification	0.3	0.4	0.3	0.4
τ daughter identification	0.7	0.7	0.6	0.6
MC statistics	1.0	1.5	1.2	1.0
Number of $B\bar{B}$ pairs	1.4	1.4	1.4	1.4
BDT $B\bar{B}$ selection	10.6	10.0	12.7	12.6
BDT $q\bar{q}$ selection	8.8	8.6	9.2	6.6
f+	1.2	1.2	1.2	1.2
Total	15.3	14.8	17.0	15.7

TABLE II. Contributions to the systematic uncertainties of the measured signal yields and branching fractions.

TABLE I. Systematic uncertainties for the branching fraction of the charged mode $(\mathcal{B}_{\rho^+\gamma})$, the neutral mode $(\mathcal{B}_{\rho^0\gamma})$, the isospin asymmetry, and the CP asymmetry.

Source	$\mathcal{B}_{\rho^+\gamma} \times 10^8$	$\mathcal{B}_{ ho^0\gamma} \times 10^8$	A_{I}	$A_{\rm CP}$
reconstruction eff.	4.1	1.2	1.5%	0.4%
cut eff.	8.9	3.3	4.0%	0.6%
Fixed PDF parameters	1.1	2.6	1.8%	0.2%
Signal shape	4.6	2.9	3.1%	0.5%
Histogram PDF	1.0	0.6	0.6%	0.2%
$K^*\gamma$ yield	3.4	5.4	3.2%	0.1%
$B\overline{B}$ peaking yield	2.2	0.7	0.9%	0.2%
A_{CP} of peaking	0.2	0.0	0.1%	1.0%
Number of $B\overline{B}$	1.7	1.4	0.3%	0.1%
Other parameters	4.0	3.6	6.3%	0.0%
Total	12.6	8.8	9.0%	1.3%

$\mathcal{B}(B \to X_s \gamma)$

- Belle II (189 fb⁻¹) result is competitive with BaBar (210 fb⁻¹) data, HLFAV
- Main systematic uncertainties for $B \rightarrow X_s \gamma$ measurement from Belle II are coming from fit procedure (generic *B* background shape and M_{bc} end-point) and simulation statistics

Photon detection efficiency & Belle II luminosity

• Belle II has good photon detection efficiency

- Design peak luminosity of $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (30 times that of KEKB) to be achieved by;
 - reducing beam size by 20 times
 - increasing beam current by 1.5 times