Carnegie Mellon University

Recent quarkonium results from Belle II 16TH INTERNATIONAL CONFERENCE ON HEAVY QUARKS AND LEPTONS

Renu On the behalf of Belle II Collaboration Supported by US DOE funding 28th Nov, 2023 - 2nd Dec, 2023

Construction of the

Bottomonium Scheme

Below the BB threshold states are well described by potential models.

- **Above BB** threshold states exhibit unexpected properties:
 - Method Hadronic transitions to lower bottomonia are strongly enhanced.
 - The η transitions are not suppressed compared to $\pi^+\pi^$ transitions. Strong violation of Heavy Quark Spin Symmetry.

Exotic admixtures: molecule, compact tetraquark, hybrid.

 $\geq Z_b^+(10610)$ or $Z_b^+(10650)$: observed near the $B^{(*)}\bar{B}^*$ thresholds, properties are consistent with $B^{(*)}\bar{B}^*$ molecules.

Discovery of $\Upsilon(10753)$

- $\Upsilon(10753)$ was observed in energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1,2,3)cross sections by Belle.
- The global significance is 5.2σ

	$\Upsilon(10860)$	$\Upsilon(11020)$	New str
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 \\ -1.3}$	10752.7
$\Gamma ~({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.}_{-11.}$

- $e^+e^- \rightarrow b\bar{b}$ cross section in bottomonium energy region based on the Belle and BABAR measurement.
 - A dip near 10.75 GeV likely caused by interference between BW and smooth component. CPC 44, 8, 083001 (2020)

Fit function: 3 BW+smooth component

$\Upsilon(10753)$: theoretical interpretation

Mass does not match $\Upsilon(3D)$ theoretical predictions, and D-wave states are not seen in e^+e^- collisions.

 $\Upsilon(4S) - \Upsilon(3D)$ mixing can be enhanced due to hadronic loops.

Unique scan data near $\sqrt{s} = 10.75$ GeV

The point with the highest statistics (9.8 fb⁻¹) is near the $\Upsilon(10753)$ peak.

Study of $\Upsilon(10753) \rightarrow (\pi^+ \pi^- \pi^0) \gamma \Upsilon(1S)$

Theory:

In Mixed 4S − 3D model suggests $\Upsilon(10753) \rightarrow \chi_{hJ}(1P)$ ω could be enhanced.

- Charmonium sector:
 - Similar to $\Upsilon(10753)$ in $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$, $\Upsilon(4260)$ was observed in 4)||**|**|| $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ cross section by BESIII.

Solution Expect similar nature of $\Upsilon(10753)$ and $\Upsilon(4260)$.

- $\langle \psi \rangle Y(4260)$ was also observed in $\chi_{c0}(1P) \omega$ and $\gamma X(3872)$ by BESIII.
- Inspired by decay modes of Y(4260) charmonium state, we expect
 - $\Im \Upsilon(10753) \rightarrow \chi_{hI}(1P) \omega$

 \Im $\Upsilon(10753) \rightarrow \gamma X_h$ X_h : bottomonium analogue of X(3872)

Recent quarkonium results from Belle II / Renu Garg / HQL 2023

PRD 104, 034036 (2021)

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{hI}(1P)$

The $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ (J = 1,2) cross sections peak at $\Upsilon(10753)$.

$$\frac{\sigma(e^+e^- \to \omega\chi_{bJ})}{\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)} \sim 1.5 \text{ at } \Upsilon(10753) \text{ GeV}$$

$$\implies \Upsilon(10753) \text{ and } \Upsilon(5S) \text{ have different internal structur}$$

$$\frac{\sigma(e^+e^- \to \omega\chi_{b1})}{\sigma(e^+e^- \to \omega\chi_{b2})} = 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$

- Contradicts the expectations for a pure D-wave **bottomonium state: 15**
- $\langle \!\!\!/ \!\!\!/ \rangle \rangle$ An observation of 1.8 σ difference with the prediction for a S - D mixed state: 0.2

PRL 130, 091902 (2023) Belle II, 1.6, 9.8, and 4.7 fb⁻¹ - Belle II data 8 $\omega\chi_{b2}$ $\omega\chi_{b1}$ -A Belle data →ωχ_{b1}) (pb) - Total fit ---- Solution I ---- Solution II σ(e⁺e⁻. 10.75 10.75 10.7 10.8 10.8 10.85 10.85 10.7 √s (GeV) Solution 1: constructive interference

Solution II: destructive interference

re?

Channel	\sqrt{s} (GeV)	N ^{sig}	σ ^(UL) _{Born} (pb)
ωχ _{b1}	10.745	$68.9^{+13.7}_{-13.5}$	$3.6^{+0.7}_{-0.7}\pm0.4$
ωχ _{b2}		$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0}\pm0.5$
ωχ _{b1}	10.805	$15.0^{+6.8}_{-6.2}$	1.6 @90% C.L
ωχ _{b2}		$3.3^{+5.3}_{-3.8}$	1.5 @90% C.L

Search for $\Upsilon(10753) \rightarrow \gamma X_b$

The X_h is posited bottomonium counterpart of X(3872).

- No significant signal of X_b signal is observed.
- Upper limits on cross sections are set for $M(X_h) \in [10.45, 10.65] \text{ GeV}$

\sqrt{s} GeV	$\sigma_B(e^+e^- \to \gamma X_b) \times \mathscr{B}(X_b \to \omega \Upsilon(1S))$
10.653	0.14-0.55
10.701	0.25–0.84
10.745	0.06–0.14
10.805	0.08–0.37

Search for $\Upsilon(10753) \rightarrow \omega \chi_{b0}(1P)/\omega \eta_b(1S)$

Motivation:

 $\mathfrak{Y}(10753) \rightarrow \eta_b(1S) \omega$

Theoretically, tetraquark interpretation predicts,

• a strong enhancement of the decay $\eta_b(1S)$ ω compared to $\Upsilon \pi^+ \pi^-$

$$\frac{\Gamma(\eta_b \omega)}{\Gamma(\Upsilon \pi^+ \pi^-)} \sim 30$$

 $(10753) \rightarrow \chi_{b0}(1S)\omega$

In charmonium analogy, $Y(4260) \rightarrow \chi_{c0}(1P) \omega$ transition is enhanced compared to $Y(4260) \rightarrow \chi_{c1,c2}(1P) \omega$ PRD 99, 091103(R) (2019) Solution Not observed in full reconstruction analysis of $\Upsilon(10753) \rightarrow \chi_{bJ}(1S) \omega$ due to small branching fraction PRL 130 091902 (2023)

Strategy

Partial reconstruction:

Reconstructed ω meson in $\pi^+\pi^-\pi^0$ and use the recoil mass of ω as signal variable

$$M_{\text{recoil}}(\pi^{+}\pi^{-}\pi^{0}) = \sqrt{\left(\frac{\sqrt{s} - E^{*}}{c^{2}}\right)^{2} - \left(\frac{p^{*}}{c}\right)^{2}}$$

<u>CPC 43 (2019) 12, 123102</u>

Results

No significant $\omega \chi_{b0}(1P)$ and $\omega \eta_b(1S)$ signals are observed. Upper limits at the 90% C.L. on the Born cross section are set.

 $\omega \to \pi^+ \pi^- \pi^0$ recoil mass distributions

Search for $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$

Search for $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$

Search for $\Upsilon(nS)(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ decay mode. $p^*(\mu^+\mu^-\pi^+\pi^-) < 100 \text{ MeV/c to reject ISR.}$

Clear signal for $\Upsilon(1S)\pi^+\pi^-$ and $\Upsilon(2S)\pi^+\pi^-$ decay mode. No evidence of $\Upsilon(3S)\pi^+\pi^-$

Search for $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS)$

New measurement confirms previous Belle result: cross section is peaking near 10.75 GeV.

	Belle II	Belle
$M_{\Upsilon(10753)}$	$10756.3 \pm 2.7 \pm 0.6$	10752.7 ± 5.9
$\Gamma_{\Upsilon(10753)}$	$29.7 \pm 8.5 \pm 1.1$	35.5 ^{+17.6+3.9} -11.3-3.3

- Results are in consistent with the Belle results.
- Uncertainties are improved by a factor of two from previous Belle results.

+0.7-1.1

- No signal of intermediate $Z_h^+(10610)$ or $Z_h^+(10650)$ resonances are observed.
- $\gg \pi^+\pi^-\Upsilon(1S)$: $M(\pi^+\pi^-)$ distribution is consistent with phase space.
- $\gg \pi^+\pi^-\Upsilon(2S)$: larger values of $M(\pi^+\pi^-)$ enhanced (similar to $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ process)

Conclusion on $\Upsilon(10753)$

- New decay modes $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}(1P)$ are observed for the first time.
- A stringent upper limit is set for the $\Upsilon(10753) \rightarrow \eta_{I}$
- Improved results for mass and width of $\Upsilon(10753)$ using $\Upsilon(10753) \rightarrow \Upsilon(nS)\pi^+\pi^-$.
- No signal of intermediate $Z_h^+(10610)$ or $Z_h^+(10650)$ resonances are observed.

$$_b(1S)\omega$$
 at $\sqrt{s} = 10.745$ GeV.

section

Motivation:

- The open flavor final states $(B^{(*)}\overline{B}^{(*)})$ make dominant contribution to $b\overline{b}$ cross-section.
 - Their measurements are critical for understanding the structure of $b\bar{b}$ states.
- Belle measured the energy dependencies of $\sigma(e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)})$ and observed an oscillatory behavior.
 - Channels $B^{(*)}\bar{B}^{(*)}$ saturate the cross-section below the $B_s^*\bar{B}_s^*$ threshold.
- The measured cross sections can be used in the coupled channel analysis of all available scan data to extract the parameters of the Υ states.
- To improve the accuracy below Y(5S) and understand the nature of Y(10753), need more data: Belle II

Belle results

- The obtained cross sections at four energies are consistent with the Belle results.
- $\supset \sigma(e^+e^- \to B^*\bar{B}^*)$ increases rapidly above $B^*\bar{B}^*$ threshold
 - \clubsuit Similar phenomenon was observed near $D^*\bar{D}^*$ threshold.
 - **Possible interpretation:** resonance or bound state ($B^*\bar{B}^*$) or $b\bar{b}$) near $B^*\bar{B}^*$ threshold
 - Inelastic channels $[\pi^+\pi^-\Upsilon(nS) \text{ and } h_b(1P)\eta]$ could also be enhanced

Comparison of $\sigma_{h\bar{h}}$ **and** $\sigma_{B\bar{B}} + \sigma_{B\bar{B}^*} + \sigma_{B^*\bar{B}^*}$

Agreement with $\sigma_{b\bar{b}}$ below the $B_s^{(*)}\bar{B}_s^{(*)}$ threshold. Deviation at high energy is presumably due to $B_s^* \bar{B}_s^*$, multi-body $B^{(*)} \bar{B}^{(*)} \pi(\pi)$, etc.

Black dots: Belle + BaBar [PRL 102, 012001 (2009), PRD 93, 011101 (2016), CPC 44, 083001 (2020)]

Open blue circles: Belle [JHEP 06, 137 (2021)]

Filled red circles: Belle II [this work]

Summary

- We are at the beginning of a long program of quarkonium physics.
- The unique scan data near $\sqrt{s} = 10.75$ GeV at Belle II provides an opportunity
 - To understand the nature of the $\Upsilon(10753)$ energy region,
 - The quarkonium spectroscopy.

Belle II detector

- Asymmetric e^+e^- collider
- **Collected data**
 - ~ 362 fb^{-1} at Y(4S)
 - 42 fb⁻¹ off-resonance, 60 MeV below Y(4S). -
 - 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies.

Features:

- Near-hermetic detector
- Excellent vertexing and tracking
- High-efficiency detection of neutrals (γ , π^0 , η, η', ...)
- Good charged particle reconstruction.

Coupled channel analysis

Recent quarkonium results from Belle II / Renu Garg / HQL 2023

Hüsken, Mitchell, Swanson, PRD 106, 094013 (2022)

All available scan data

K-matrix: scattering via Υ(4S), Υ(10753), $\Upsilon(5S), \Upsilon(6S)$ or non-resonantly.

Results: pole positions, branching fraction, energy dependence of scattering amplitudes.

Accuracy above $\Upsilon(6S)$ and near $\Upsilon(10753)$ is poor.

Decay modes used:

$B^+ \rightarrow$	$B^0 \rightarrow$
$ar{D}^0\pi^+$	$D^{-}\pi^{+}$
$ar{D}^0\pi^+\pi^+\pi^-$	$D^-\pi^+\pi^+\pi^-$
$ar{D}^{*0}\pi^+$	$D^{*-}\pi^+$
$\bar{D}^{*0}\pi^+\pi^+\pi^-$	$D^{*-}\pi^{+}\pi^{+}\pi^{-}$
$D_s^+ ar{D}^0$	$D_s^+ D^-$
$D_s^{*+}ar{D}^0$	$D_s^{*+}D^-$
$D_s^+ \bar{D}^{*0}$	$D_{s}^{+}D^{*-}$
$D_s^{*+}\bar{D}^{*0}$	$D_{s}^{*+}D^{*-}$
J/\psiK^+	J/\psiK_S
$J/\psiK_S\pi^+$	$J/\psiK^+\pi^-$
$J/\psi K^+\pi^+\pi^-$	
$D^-\pi^+\pi^+$	$D^{*-}K^+K^-\pi^+$
$D^{*-}\pi^{+}\pi^{+}$	

$D^0 \rightarrow$	$D^+ \rightarrow$	$D_s^+ \rightarrow$
$K^-\pi^+$	$K^-\pi^+\pi^+$	$K^+K^-\pi^+$
$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	K^+K_S
$K^-\pi^+\pi^+\pi^-$	$K_S \pi^+$	$K^+K^-\pi^+\pi^0$
$K_S \pi^+ \pi^-$	$K_S \pi^+ \pi^0$	$K^+K_S \pi^+\pi^-$
$K_S \pi^+ \pi^- \pi^0$	$K_S \pi^+ \pi^+ \pi^-$	$K^-K_S \pi^+\pi^+$
K^+K^-	$K^+K^-\pi^+$	$K^+K^-\pi^+\pi^+\pi^-$
$K^+K^-K_S$		$K^+\pi^+\pi^-$
		$\pi^+\pi^+\pi^-$

Method:

- Reconstruct one B in full hadronic channels.
- Mr Key variables for analysis are

$$M_{\rm bc} = \sqrt{(E_{cm}/2)^2 - p_B^2}$$

 $\Delta E' = \Delta E - M_{\rm bc} + M_B$, where $\Delta E = E_B - E_{\rm cm}/2$

- $\Delta E'$ has improved resolution and allows all desired twobody decays to be selected with a common cut
- Populations of each can be studied by fitting the projections onto the M_{bc} axis for all energies at which data were accumulated
- $\circledast B^* \to B\gamma$ decays are not reconstructed.

$\Delta E'$ vs $M_{\rm bc}$ at $E_{\rm cm}$ = 10.746 GeV

$M_{\rm bc}$ fit at scan energies

- \blacktriangleright $M_{\rm bc}$ fit distribution:
 - \blacktriangleright $\Delta E'$ signal region (upper)
 - \blacktriangleright $\Delta E'$ side-bands (lower)
- Contribution of $\Upsilon(4S) \rightarrow B\overline{B}$ production via ISR is visible well (black dotted histograms)
- At $\sqrt{s} = 10.653$ GeV, the sharp cut of the data at right edge is due to threshold effect

Four ways to access bottomonia:

M Direct production from e⁺e⁻: J^{PC} = 1⁻⁻: Υ(nS)
ISR production: J^{PC} = 1⁻⁻: Υ(nS)
Hadronic transitions from Y(nS) through η, ππ, ... J^{PC} = 0⁻⁺, 1⁻⁻, 1⁺⁻...: Υ(nS), η_b(nS), h_b(nS), ...
Radiative transitions from Y(nS)

 $J^{PC} = 0^{-+}, 0^{++}, 1^{++}, 2^{++}: \eta_b(nS), \chi_b(nP)$

