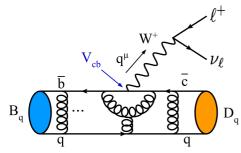
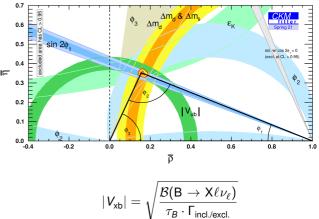


Recent Measurements of $|V_{cb}|$ and $|V_{ub}|$ with Belle (II)

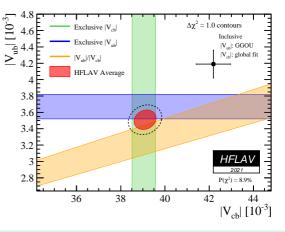
XXX Cracow EPIPHANY Conference on Precision Physics at High Energy Colliders


Moritz Bauer on behalf of Belle (II) | 09. January 2024



CKM Unitarity: $|V_{cb}|$ and $|V_{ub}|$

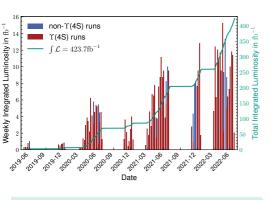
- |V_{cb}| and |V_{ub}| are central to unitarity tests used to constrain the CKM matrix and thus the SM
 - Explicitly: Direct comparison between ratio $|V_{\rm ub}|/|V_{\rm cb}|$ and angle ϕ_1
- Most precise determinations: Semileptonic B decays


Exclusive and Inclusive Measurements

- Exclusive Measurements:
 - Analysis: Measure specific final state(s) (e.g. B \rightarrow D $\ell \nu_{\ell})$
 - Theory input: Lattice QCD (LQCD)
 - Parametrizations $|V_{cb}|$:

Caprini-Lellouch-Neubert (CLN) Nucl. Phys. B530, 153 and Boyd-Grinstein-Lebed (BGL) PRD 56,

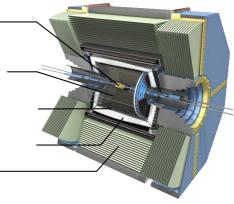
- Parametrization | V_{ub} |: Bourrely-Caprini-Lellouch (BCL) Phys. Rev. D, 79, Jan 2009
- Inclusive Measurements:
 - Analysis: Measure entirety of $\mathsf{B} \to \mathsf{X} \ell \nu$ decays
 - Theory: Heavy Quark Expansion
 - Models (in this talk): Bosch-Lange-Neubert-Paz (BLNP) PRD 72, 073006 and Gambino-Giordano-Ossola-Uraltsev (GGOU) JHEP 10, 058 (2007)

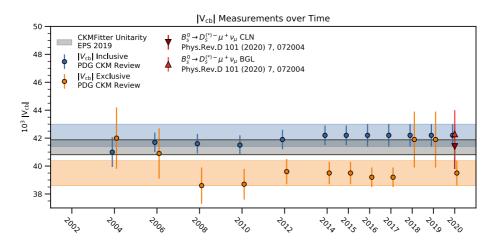


• $\approx 3\sigma$ tension between these two approaches

 \Rightarrow Severely limits precision tests in flavor physics

The Belle II Experiment


Data set: 423.7 fb⁻¹ ($\approx 1/2$ Belle)


Central Drift Chamber $\approx 0.4\% p_{T}$ resolution

Particle Identification (π / K) ϵ_{κ} = 90% with 1.8% π fake rate

Elektromagnetic Calorimeter Sensitive down to 20 MeV K_{L}^{0} / μ^{-} detector $\epsilon_{\mu} = 90\%$ with 1 - 2% π/K fake rate

 V_{cb}

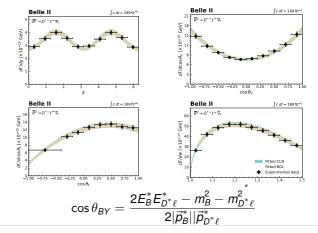
Credit: Markus Prim

Belle II: $|V_{cb}|$ from B \rightarrow D^{*} $\ell \nu$ PRD 108, 092013

Reconstruction chain:

νø

Ction channed $B \rightarrow D^{*+} \ell \nu_{\ell}$ $\downarrow \rightarrow D^{0} \pi^{+}_{slow}$ $\downarrow \rightarrow K^{-} \pi^{+}$

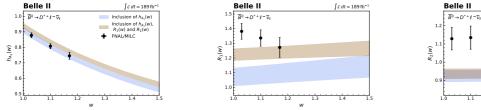

W' B

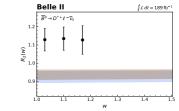
Challenge: Slow (p < 0.4GeV/c) pion efficiency</p>

D*+

 $w = \frac{1}{m_{\rm B}} p_{\rm B}^{\mu} \frac{1}{m_{\rm X_c}} p_{\rm X_c \mu}$

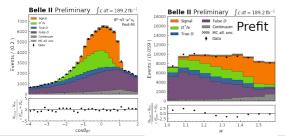
2D fit in cos θ_{BY} and ΔM = M(D^{*+}) − M(D⁰) for each bin of χ, cos θ_ℓ, cos θ_ν and w:

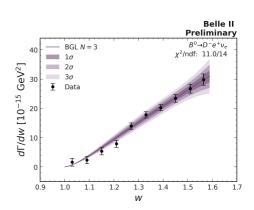

 $\sqrt{\pi^+}$


Belle II: $|V_{cb}|$ from B \rightarrow D^{*} $\ell \nu$ PRD 108, 092013

- $|V_{\rm cb}|$ extraction: Fit shapes in χ , $\cos \theta_{\ell}$, $\cos \theta_{\nu}$ BGL and CLN parameterizations
- BGL truncation based on nested hypothesis test PRD 100, 013005
- Inclusion of LQCD constraint beyond zero-recoil (w = [1.03, 1.10, 1.17]) in two scenarios, disagreement with LQCD in R₁ and R₂:

	Constraints on	Constraints on
BGL	$h_{A_1}(w)$	$h_{A_1}(w), R_1(w), R_2(w)$
$a_0 \times 10^3$	21.7 ± 1.3	$25.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.8 \hspace{0.2cm}$
$b_0 \times 10^3$	13.19 ± 0.24	13.61 ± 0.23
$b_1 \times 10^3$	-6 ± 6	2 ± 6
$c_1 \times 10^3$	-0.9 ± 0.7	0.0 ± 0.7
$ V_{cb} \times 10^3$	40.3 ± 1.2	38.3 ± 1.1
χ^2/ndf	39/33	75/39
p value	21%	0.04%

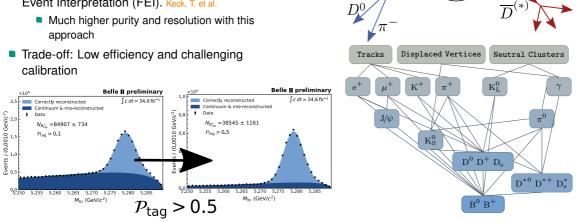



Belle II: $|V_{ch}|$ from B $\rightarrow D\ell\nu$ Preliminary, arXiv: 2210.13143

- Key differences to $B \rightarrow D^* \ell \nu$:
 - No slow pion

8

- More backgrounds
- 5 component fit in $\cos \theta_{BY}$ for each bin of w:



Measured $|V_{cb}| = (38.3 \pm 1.2) \times 10^{-3}$ 3% error, competitive with previous determinations

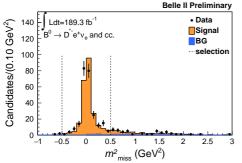
Full-Event Tagging

- e^-e^+ collisions "clean" compared to pp.
 - $\blacksquare \, \approx \, 10 \; \text{tracks}$ in a typical $B\overline{B}$ event
- Full-Event Tagging: Use 2nd B (B_{tag}) e.g. with Full Event Interpretation (FEI). Keck, T. et al.

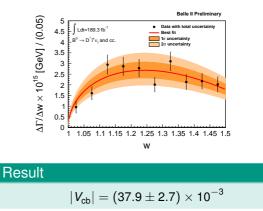
 π

 $B_{\rm tag}^-$

 $B_{\rm sig}^+$

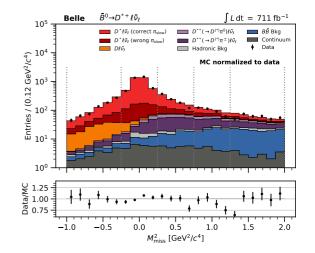

VO

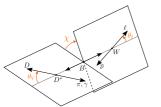
Belle II: $|V_{cb}|$ from Tagged B ightarrow D* ℓu Preliminary, arXiv: 2301.04716

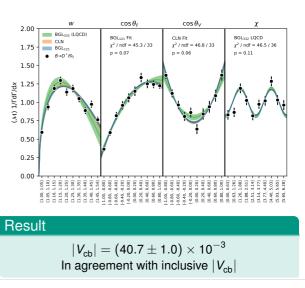

 Very pure signal selection with ΔM and missing mass from recoil of second B:

$$M^2_{ ext{miss}} = (-{p_{ ext{B}_{ ext{tag}}}} - {p_{ ext{D}^*\ell}})^2$$

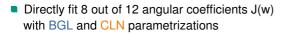
• Major systematics: Slow π^{\pm} & tagging calibration


 Fit CLN Nucl. Phys. B530, 153 parametrization to differential decay rates


Belle: Tagged Differential Measurements

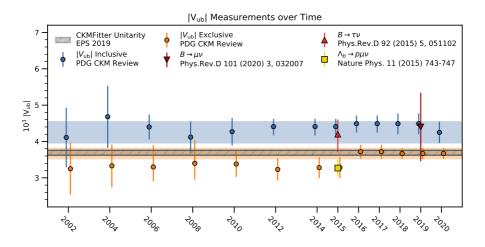

- Two results with 711 fb⁻¹ Belle data set: Differential Distributions PRD 108, 012002 and Angular Coefficients J(w) Submitted to PRL of $B \rightarrow D^* \ell \nu$
- Full-Event tagging and extraction of N_{events} in M_{miss}^2
- Challenging to calibrate tagging method → Use only normalized differential information and take absolute BF from HFLAV.
 - Improvement of |V_{cb}| from high granularity in differential shapes

Belle: Differential Distributions PRD 108, 012002

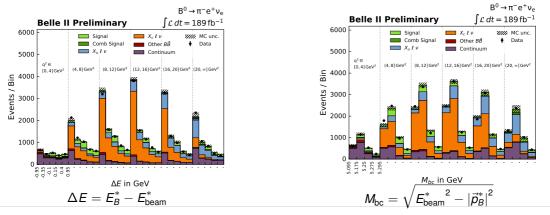

- Established approach: Fit projections in 160 bins of w, cos θ_ℓ, cos θ_v and χ
- Three fit szenarios:
 - Constraint on FF normalization at w = 0 ("nominal") Fermilab Lattice, MILC (2014)
 - Additional constraint for h_{A1} FF at w > 0 Fermilab Lattice, MILC (2021)
 - Additional constraints for all FFs at w > 0
- Last scenario: Tension with $R_2(w)$ constraint



Belle: Angular Coefficients Submitted to PRL, arXiv:2310.20286



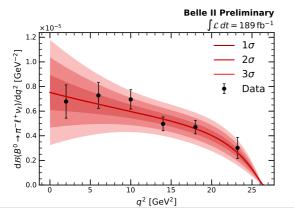
45


 $|V_{ub}|$

Credit: Markus Prim

Belle II: $|V_{ub}|$ from B $\rightarrow \pi^+ \ell \nu_\ell$ Preliminary, arXiv:2210.04224

- Form factors given as function of (squared) momentum transfer $q^2 = (p_B p_\pi)^2$
- Signal fit of beam-constrained mass $M_{\rm bc}$ and energy difference ΔE in 6 bins of q^2
- Dominating systematic uncertainties: Background (Continuum, $B \rightarrow \rho \ell \nu_{\ell}$) modelling



Belle II: $|V_{ub}|$ from B $\rightarrow \pi^+ \ell \nu_\ell$ Preliminary, arXiv:2210.04224

- Form factors given as function of (squared) momentum transfer $q^2 = (p_B p_\pi)^2$
- Signal fit of beam-constrained mass $M_{\rm bc}$ and energy difference ΔE in 6 bins of q^2
- Dominating systematic uncertainties: Background (Continuum, B $\rightarrow \rho \ell \nu_{\ell}$) modelling

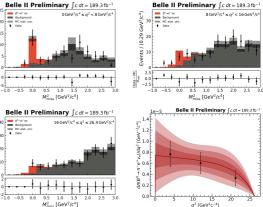
- |V_{ub}| extracted from LQCD and in Bourrely-Caprini-Lellouch (BCL) parametrization Phys. Rev. D, 79, Jan 2009
 - Fit in q² reduces theory uncertainties in |V_{ub}| extraction

Result:

$$V_{ub}| = (3.55 \pm 0.12_{stat} \pm 0.13_{syst} \pm 0.17_{theo}) imes 10^{-3}$$

Tagged analysis with fit of M_{miss}^2 in three bins of q^2

- Using $189 \, \text{fb}^{-1}$ data set ($\approx 1/2$ of current)
- Charged and neutral pions but only electron channel (so far)


Result:

Still heavily dominated by statistical uncertainties

 $|V_{\rm ub}| = (3.88 \pm 0.45) \times 10^{-3}$

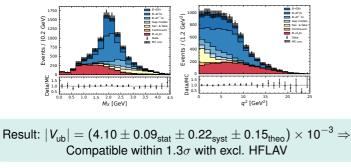
Belle II: $|V_{ub}|$ from Tagged B $\rightarrow \pi e^- \nu_\ell$ Preliminary, arXiv: 2206.08102

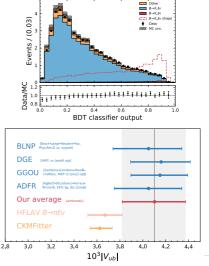
ts / (0.29

GeV²/

(0.29 (

Data - MC

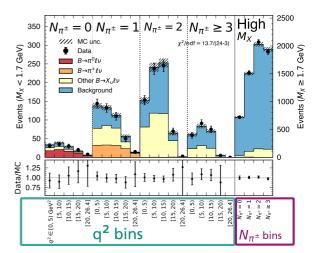

Belle: $|V_{ub}|$ from Tagged Inclusive B ightarrow X $_{ m u}\ell u_{\ell}$ PRD 104, 012008



- Challenge: Covering large (up to 86%) phase space only possible with huge B \to X_c $\ell\nu_\ell$ bkg.
 - Decreases theory uncertainties

18

Solution: Tagging and MVA discrimination

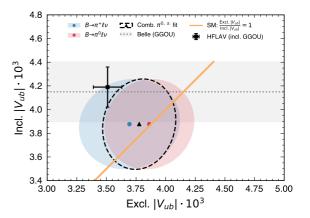

09.01.2024 Moritz Bauer: Recent Measurements of $|V_{cb}|$ and $|V_{ub}|$ with Belle (II)

Belle: $|V_{ub}|$ from Simultaneous B $\rightarrow \pi \ell \nu_{\ell}$ and B $\rightarrow X_u \ell \nu_{\ell}$ PRL 131, 211801

- Improved treatment of shared systematic uncertainties by simultaneous determination
- 2D-fit in bins of

19

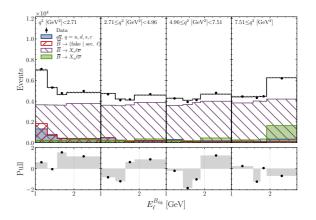
- q^2 : number of charged pions $(N_{\pi^{\pm}})$
- Only fit in $N_{\pi^{\pm}}$ for $M_X > 1.7 \, {
 m GeV}$
- Dominant systematic uncertainties:
 - \blacksquare Exclusive: Tagging efficiency calibration (4.1%) and B \to $X_u\ell\nu_\ell$ model (3.5%)
 - Inclusive: B \to $X_u\ell\nu_\ell$ model (10.9%) and the u \to X_u fragmentation (5.3%)



Belle: $|V_{ub}|$ from Simultaneous B $\to \pi \ell \nu_\ell$ and B $\to X_u \ell \nu_\ell$ PRL 131, 211801

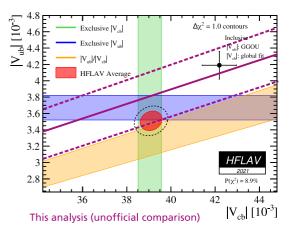
- Multiple scenarios in the $|V_{ub}|$ fit:
 - Separated for π^{\pm} / π^{0} or (isospin) combined
 - With (shown) or without experimental constraint

$$\begin{split} |V_{ub}^{\text{excl}}| &= (3.78 \pm 0.23_{\textit{stat}} \pm 0.16_{\textit{syst}} \pm 0.14_{\textit{theo}}) \times 10^{-3} \\ |V_{ub}^{\text{incl}}| &= (3.88 \pm 0.20_{\textit{stat}} \pm 0.31_{\textit{syst}} \pm 0.09_{\textit{theo}}) \times 10^{-3} \\ \text{Ratio:} |V_{ub}^{\text{excl}}| / |V_{ub}^{\text{incl}}| &= 0.97 \pm 0.12 \\ &\Rightarrow \text{Compatible with unity} \end{split}$$



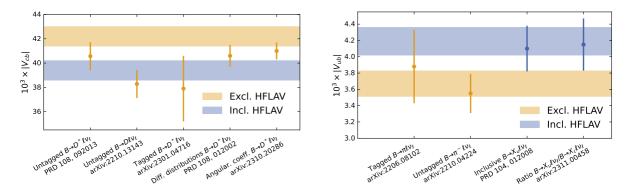
Belle: Ratio of $|V_{ub}|$ and $|V_{cb}|$ from Tagged Inclusive Decays Submitted to PRD, arXiv: 2311.00458

- Data-driven modelling of B $\rightarrow X_c \ell \nu_\ell$ bkg. using N_K sideband
- Ratio avoids uncert. from tag efficiency
- B ightarrow X_u $\ell
 u_{\ell}$ yields extracted in q^2 : p_{ℓ}^B fit


Belle: Ratio of $|V_{ub}|$ and $|V_{cb}|$ from Tagged Inclusive Decays Submitted to PRD, arXiv: 2311.00458

0)

- \blacksquare Data-driven modelling of $B \to X_c \ell \nu_\ell$ bkg. using N_K sideband
- Ratio avoids uncert. from tag efficiency
- B \rightarrow X_u $\ell \nu_{\ell}$ yields extracted in q^2 : p_{ℓ}^B fit


Result (with BLNP model for $B \rightarrow X_u \ell \nu_\ell$)

$$\begin{split} \frac{|V_{ub}|}{|V_{cb}|} &= 0.0972 (1 \pm 4.2\%_{stat} \pm 3.9\%_{syst} \\ &\pm 5.2\%_{B \to X_c \ell \nu_{\ell}} \pm 2.0\%_{B \to X_u \ell \nu} \end{split}$$

Summary

10 Measurements shown today: Belle II is ramping up with many new measurements and we're squeezing the last drop from the well-understood Belle data set!