

## Measurements of Michel parameters and tests of lepton universality in T decays at Belle and Belle II

Paul Feichtinger, on behalf of the Belle/Belle II Collaboration

17th International Workshop on Tau Lepton Physics (TAU2023) Louisville, Kentucky

4<sup>th</sup> December 2023

#### т physics at B factories

- Belle/Belle II are general purpose detectors: B and D physics, quarkonium, T-physics, dark sector, ...
- colliding electrons and positrons at  $m_{\gamma(4S)}$ =10.58 GeV/c<sup>2</sup>

 $egin{aligned} &\sigmaig(e^+e^- o \Upsilon(4S)ig) = 1.05 \mathrm{nb} \ &\sigmaig(e^+e^- o au^+ au^-ig) = 0.919 \mathrm{nb} \end{aligned}$ 

- Belle: 988 fb<sup>-1</sup>  $\rightarrow$  ~908 million T pairs
- Belle II: 424 fb<sup>-1</sup>  $\rightarrow$  ~390 million T pairs
- clean collision environment ( $e^+ = e^-$ )
- large solid angle coverage (> 90%)
  - well known missing mass and energy
- good track reconstruction, particle identification



#### $\textbf{KEKB} \rightarrow \textbf{SuperKEKB} \ \textbf{accelerator}$

- 2x beam currents, 50 nm vertical beam spot size ("nano beam")
- design peak luminosity  $2.1 \times 10^{34} \rightarrow 6.0 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- SuperKEKB currently holds world record  $(4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1})$



challenge: increased beam backgrounds and trigger rates

#### $\textbf{Belle} \rightarrow \textbf{Belle II detector}$

- new 2-layer Pixel Detector with first layer at 1.4cm
- 4-layer Silicon Vertex Detector with larger acceptance
- Central Drift Chamber with larger outer radius
- improved particle ID (K/π separation)
- improved trigger, and faster electronics in general



» arXiv:1011.0352 (Technical Design Report)

### Michel parameters in leptonic decays

• Michel parameters (MP) of a lepton decay are bilinear combinations of coupling constants arising in the most general expression for the decay matrix element



- MP describe the Lorentz structure of the charged current in the theory of weak interaction and can be used to test the SM (only nonzero term in SM is  $g_{11}^{V} = 1$ )
- deviations can be caused by anomalous coupling with the W-boson, new gauge or charged Higgs bosons, presence of massive neutrinos [1]

» [1] JHEP 2022 (2022) 117

#### Measurement of Michel parameters at Belle

$$\frac{d^2\Gamma}{dx\,d\cos\theta} = \frac{m_{\tau}}{4\,\pi^3} W_{\ell\tau}^4 G_F^2 \sqrt{x^2 - x_0^2} \left( F_{IS}(x) \pm F_{AS}(x) P_{\tau}\cos\theta + F_{T_1}(x) P_{\tau}\sin\theta\zeta_1 + F_{T_2}(x) P_{\tau}\sin\theta\zeta_2 + (\pm F_{IP}(x) + F_{AP}(x) P_{\tau}\cos\theta)\zeta_3 \right)$$

$$W_{\ell\tau} = \max E_{\ell} = \frac{m_{\tau}^2 + m_{\ell}^2}{2m_{\tau}}, x = \frac{E_{\ell}}{\max E_{\ell}}, x_0 = \frac{m_{\ell}}{\max E_{\ell}}, P_{\tau} = |P_{\tau}|$$

| parametric<br>functions      | MPs                                                    |                          |
|------------------------------|--------------------------------------------------------|--------------------------|
| $F_{IS}(x):$<br>$F_{AS}(x):$ | $egin{array}{ll}  ho,\eta \ \xi,\xi\delta \end{array}$ | polarisation insensitive |
| $F_{IP}(x)$ :                | $\xi', \xi, \xi\delta$                                 | polarisation sensitive   |

|         | $\mu^- \to e^- \nu_\mu \overline{\nu}_e$ | $\tau^- \to e^- \nu_\tau \overline{\nu}_e$ | $\tau^- \to \mu^- \nu_\tau \overline{\nu}_\mu$ | SM   |
|---------|------------------------------------------|--------------------------------------------|------------------------------------------------|------|
| $\rho$  | $0.74979 \pm 0.00026$                    | $0.747 \pm 0.010$                          | $0.763 \pm 0.020$                              | 0.75 |
| $\eta$  | $0.057 \pm 0.034$                        | —                                          | $0.094 \pm 0.073$                              | 0    |
| ξ       | $1.0009\substack{+0.0016\\-0.0007}$      | $0.994 \pm 0.040$                          | $1.030\pm0.059$                                | 1    |
| ξδ      | $0.7511\substack{+0.0012\\-0.0006}$      | $0.734 \pm 0.028$                          | $0.778 \pm 0.037$                              | 0.75 |
| $\xi'$  | $1.00\pm0.04$                            | —                                          | $0.22 \pm 1.03$                                | 1    |
| $\xi''$ | $0.65\pm0.36$                            | _                                          | _                                              | 1    |

• ongoing analysis for  $\rho$ ,  $\eta$ ,  $\xi$  and  $\xi\delta$  in  $\tau$  decays [1]

 statistical uncertainty at order 10<sup>-3</sup> systematics around 10<sup>-2</sup>

- measurement of η and ξκ in radiative leptonic τ-decays [2]
- new measurement of  $\xi'$  in  $\tau \to \mu \bar{v}_{\mu} v_{\tau}$  [3]

Michel parameters and their most accurate determinations [4]

» [1] <u>Nucl.Part.Phys.Proc. 287-288 (2017)</u>
» [2] <u>PTEP 2018 (2018) 2, 023C01</u>
» [3] <u>Phys.Rev.Lett. 131 (2023) 021801</u>
» [4] JHEP 2022 (2022) 117



# First measurement of the Michel parameter $\xi'$ in the $\tau^{-} \to \mu^{-} \bar{v_{\mu}} v_{\tau}$ decay at Belle

- method uses muon decay-in-flight
- searching for kinks inside the tracking detector
- the information about muon spin can be inferred from the daughter electron direction in the muon rest frame due to P-violation in the decay
- using the full Belle data sample of 988 fb<sup>-1</sup>



## **Kink candidates**





- daughter particle momentum in the rest frame of the mother particle with pion and kaon mass hypotheses
- main background sources are two body decays of π and K

• BDT is used to suppress background by 50 times with the signal efficiency  $\epsilon_{sig} \approx 80 \%$ 

## Result



angle of electron emission direction in the muon rest frame

- 2D unbinned likelihood fit using y and  $\cos\theta_{e}$
- histogram is signal, filled area is the background function
- the measured value is **ξ'** = 0.22 ± 0.94 (stat) ± 0.42 (syst) [1, 2]
  - $\circ$  total uncertainty is 1.03
- Belle II (with 50 ab<sup>-1</sup>) can improve the statistical uncertainty up to  $\sigma_{\xi'} \approx 7 \times 10^{-3}$ [3]
  - enlarged drift chamber, special kink reconstruction algorithm, higher integrated luminosity
  - GNN-based tracking algorithm for displaced tracks [4]
  - systematics can be controlled at the same level with various data samples with kinks



#### Lepton universality tests at Belle II



- in the SM the electroweak gauge bosons have the same coupling to all generations of leptons
- precise test of µ-e universality by measuring

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} \mu^{-} \overline{\nu}_{\mu}(\gamma)\right)}{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)\right)} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}} \qquad \qquad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\ln x$$
[1]

• ratio of leptonic branching fractions

$$R_{\mu} \equiv \frac{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} \mu^{-} \overline{\nu}_{\mu}(\gamma)\right)}{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)\right)} \stackrel{\text{SM}}{=} 0.9726$$

is sensitive to new physics if it violates lepton flavour [2] or lepton universality in weak charged-currents [3]

- » [1] Phys.Rev.Lett. 61 (1988) 1815
- » [2] arXiv:1607.06832
- » [3] <u>arXiv:2105.06734</u>

### **Event topology**

using 1-prong decays with one charged hadron and at least one  $\pi^0$  on the tag side

- large BF (~35%), low backgrounds, high trigger efficiency
- Signal side selection
  - > 1 track: particle ID requirement (µ or e)
- Tag side selection
  - > 1 track:  $E_{cluster} / p < 0.8$

> 
$$N(\pi^0)_{tag} > 0$$



#### Dataset

• on-resonance sample corresponding to 362 fb<sup>-1</sup> (2019 - 2022)



#### **Event selection**

- Background suppression with rectangular cuts + neural network
- exactly same selection is used for e and  $\mu$  sample
  - thrust value
  - $\circ$  thrust axis  $\theta$
  - total visible energy (CMS)
  - missing momentum:  $p_T \theta$  (CMS)
  - $\circ$  tag side: p,  $\theta$ , M (CMS)
- restrict analysis to region least sensitive to particle ID systematics
  - $\circ$  0.82 <  $\theta_{lepton}$  < 2.13 (barrel of muon detector)
  - $\circ$  1.5 GeV < p<sub>lepton</sub> < 5.0 GeV
- 94% purity @ 9.6% signal efficiency for combined e+µ sample
  - $\circ \qquad e^+e^- \rightarrow \tau^+\tau^- (\pi^{\pm} \text{ faking } \mu^{\pm}/e^{\pm}): \sim 3.3\%$
  - $\circ \qquad e^+e^- \rightarrow \tau^+\tau^- \text{ (wrong tag): ~2.3\%}$
  - $\circ \qquad e^+e^- \rightarrow e^+e^- T^+T^-: 0.2\%$

main backgrounds

 $V_{thrust} \stackrel{max}{=} rac{\sum_{i} |\vec{p}_{i}^{\mathrm{CM}} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p}_{i}^{\mathrm{CM}}|}$ 





## $R_{\mu}$ extraction

- measure  $R_{\mu}$  with a binned maximum likelihood fit using the pyhf library [1]
- 21 bins defined over lepton momentum from 1.5 to 5 GeV
- systematics are included with (constrained) nuisance parameters that modify the templates
- 3 templates for  $\mu$  and e channel
  - signal decays
  - background with correct lepton on the signal side
  - background with misidentified particle on the signal side



» [1] <u>JOSS 6 (2021) 2823</u>

### **Systematics**

#### Particle identification (leading) (0.32%)

- correction factors and uncertainties derived from calibration channels
  - $\circ \qquad \text{eff.: } J/\psi \longrightarrow \ell^+\ell^-, \, e^+e^- \longrightarrow e^+e^-\ell^+\ell^- \text{ and } e^+e^- \longrightarrow \ell^+\ell^-(\gamma)$
  - $\circ \qquad \text{fakes: } \mathsf{K}_{\mathsf{S}}^{\ 0} \to \pi^{+}\pi^{-} \text{ and } \mathsf{T}^{\pm} \to \pi^{\pm}\pi^{\mp} \mathsf{N}_{\mathsf{T}}^{}$

#### Trigger (sub-leading) (0.10%)

- used triggers are based on EM calorimeter information, targeting low multiplicity events
  - $\circ$  most important: E<sub>ECL</sub>>1 GeV trigger
- correction factor for MC obtained directly from data
  - ε=99.8% for  $\tau^- \rightarrow e^- v_e^- v_{\tau}$  and ε=96.6% for  $\tau^- \rightarrow \mu^- v_{\mu}^- v_{\tau}$

| Source                                 | Uncertainty $[\%]$ |
|----------------------------------------|--------------------|
| Charged-particle identification:       |                    |
| Electron identification                | 0.22               |
| Muon misidentification                 | 0.19               |
| Electron misidentification             | 0.12               |
| Muon identification                    | 0.05               |
| Trigger                                | 0.10               |
| Imperfections of the simulation:       |                    |
| Modelling of FSR                       | 0.08               |
| Normalisation of individual processes  | 0.07               |
| Modelling of the momentum distribution | 0.06               |
| Tag side modelling                     | 0.05               |
| $\pi^0$ efficiency                     | 0.02               |
| Modelling of ISR                       | 0.01               |
| Photon efficiency                      | < 0.01             |
| Photon energy                          | < 0.01             |
| Size of the samples                    |                    |
| Simulated samples                      | 0.06               |
| Luminosity                             | 0.01               |
| Charged-particle reconstruction:       |                    |
| Particle decay-in-flight               | 0.02               |
| Tracking efficiency                    | 0.01               |
| Detector misalignment                  | < 0.01             |
| Momentum correction                    | < 0.01             |
| Total                                  | 0.37               |

relative systematic uncertainties of R<sub>u</sub>

#### Stability of the result

- checked for consistency of the result before unblinding
- sub-regions for different kinematic variables (momentum, polar angle, missing momentum, charge), data-taking periods as well as different requirements for particle-identification
- good agreement between the measured values



#### Result

- we measure R<sub>u</sub> = 0.9675 ± 0.0037
  - statistical uncertainty 0.0007
  - systematic uncertainty 0.0036
- consistent with SM expectation at the level of 1.4 sigma







#### Result





- most precise test of  $\mu$ -e universality in  $\tau$  decays from a single measurement
  - $\circ$  determination of g<sub>u</sub>/g<sub>e</sub> from global fit to tau BFs: 1.0019 ± 0.0014 [1]
- combination of CLEO, BaBar and Belle II (assuming indep. systematics) yields  $g_{\mu}/g_{e} = 1.0005 \pm 0.0013$

» [1] HFLAV, Phys.Rev.D 107 (2023) 052008

#### Summary

- Belle data (988 fb<sup>-1</sup>) is still being actively analysed
  - first measurement of the Michel parameter  $\xi'$  using a novel method
- Belle II recorded 424 fb<sup>-1</sup> so far, resuming data taking soon
- new results for test of µ-e universality
  - world's best determination from single measurement
  - similar systematics as BaBar measurement
  - still room for improvement in systematics
- more (T) physics to come from Belle/Belle II !



### Thank you!

backup slides  $_{\mathcal{V}}$ 

# Radiative and five-body leptonic $\tau$ decays

- Radiative and five-body leptonic  $\tau$ -decays provide information about Michel parameters that describe daughter lepton polarization in  $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$
- Their understanding is also crucial for LFV studies as they are main background

| Radiative<br>leptonic<br>τ-decay                                             | $ \begin{array}{ll} \underbrace{\frac{d\Gamma(\tau^{-} \rightarrow \ell^{-}\bar{\nu}_{\ell}\nu_{\tau}\gamma)}{dE_{\ell}d\Omega_{\ell}dE_{\gamma}d\Omega_{\gamma}} = \left(A_{0} + \bar{\eta}A_{1}\right) + \left(\overrightarrow{B}_{0} + \xi\kappa\overrightarrow{B}_{1}\right) \cdot \overrightarrow{S}_{\tau} & \frac{\xi\kappa = -1/4(\xi + \xi') + 2/3\xi\delta}{\bar{\eta} = 4/3\rho - 1/4\xi'' - 3/4} \\ \\ \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \begin{array}{ll} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{ll} \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \end{array} \end{array} \\ $ |                                                     |                                |                                           |                           |                         |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|-------------------------------------------|---------------------------|-------------------------|--|
|                                                                              | Belle estimations for $\mathscr{L} = 700  \text{fb}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                |                                           |                           |                         |  |
|                                                                              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mode                                                | SM Br                          | Measured                                  | Expected N                | Systematics             |  |
| Belle II car<br>epeat with<br>ter precisi<br>Five-bod<br>leptonic<br>r-decay | onic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tau^- \to e^- e^+ e^- \bar{\nu}_e \nu_\tau$       | $4.21(1) \times 10^{-5}$       | $(1.8 \pm 1.5) \times 10^{-5}$            | $1300 (r_{\rm s} = 47\%)$ | (6 – 12) %              |  |
|                                                                              | $\tau^- \to \mu^- e^+ e^- \bar{\nu}_e \nu_\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.984(4) \times 10^{-5}$                           | $< 3.2 \times 10^{-5}  (90\%)$ | $430(r_{\rm s} = 50\%)$                   | (8 – 13) %                |                         |  |
|                                                                              | $\tau^- \to e^- \mu^+ \mu^- \bar{\nu}_e \nu_\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.247(1) \times 10^{-7}$                           | NM                             | $8(r_{\rm s} = 37\%)$                     | (36 – 72)%                |                         |  |
| pet -                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tau^- \to \mu^- \mu^+ \mu^- \bar{\nu}_e \nu_\tau$ | $1.183(1) \times 10^{-7}$      | NM                                        | $4(r_{\rm s} = 16\%)$     | (36 – 72)%              |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>JHEP 04 (</u>                                    | <u>2016) 185</u>               | An | J.Phys.Conf.S             | <u>er. 912 (2017) 1</u> |  |
| Denis Bodrov                                                                 | Tau physics program at Belle II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                |                                           | 7 /:                      |                         |  |

## $\tau$ lepton polarization at Belle II

The beams at Belle II are not polarized, so average *τ* lepton polarization is zero. Nevertheless, spins of *τ* leptons are correlated in e<sup>+</sup>e<sup>-</sup> → τ<sup>+</sup>τ<sup>-</sup>:

$$\frac{d\sigma(e^+e^-(w^-) \to \tau_{\rm sig}(\vec{s}_{\rm sig})\tau_{\rm tag}(\vec{s}_{\rm tag}))}{d\Omega_{\tau}} = \frac{\alpha^2\beta}{64E^2} \begin{bmatrix} A_0 + D_{ij}(\vec{s}_{\rm sig})_i(\vec{s}_{\rm tag})_j \end{bmatrix}$$

$$A_0 = 1 + \cos^2\theta_{\tau} + \frac{\sin^2\theta_{\tau}}{\gamma^2} \qquad D_{ij} = \begin{bmatrix} \left(1 + \frac{1}{\gamma^2}\right)\sin^2\theta_{\tau} & 0 & \frac{1}{\gamma}\sin 2\theta_{\tau} \\ 0 & -\beta^2\sin^2\theta_{\tau} & 0 \\ \frac{1}{\gamma}\sin 2\theta_{\tau} & 0 & 1 + \cos^2\theta_{\tau} - \frac{\sin^2\theta_{\tau}}{\gamma^2} \end{bmatrix}$$

• One can use tagging  $\tau$  lepton as a spin analyzer with the decay mode  $\tau^+ \to \pi^+ \pi^0 \bar{\nu}_{\tau}$ . This mode has the largest branching fraction (around 25 %), and it is also well-studied

## Leptonic differential decay width parametric functions definition

$$\begin{split} F_{IS}(x) &= x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \\ F_{AS}(x) &= \frac{1}{3}\xi\sqrt{x^2 - x_0^2} \left[ 1 - x + \frac{2}{3}\delta\left(4x - 3 - \frac{x_0^2}{2}\right) \right] \\ F_{IP}(x) &= \frac{1}{54}\sqrt{x^2 - x_0^2} \left[ -9\xi'\left(2x - 3 + \frac{x_0^2}{2}\right) + 4\xi\left(\delta - \frac{3}{4}\right)\left(4x - 3 - \frac{x_0^2}{2}\right) \right] \\ F_{AP}(x) &= \frac{1}{6} \left[ \xi''\left(2x^2 - x - x_0^2\right) + 4\left(\rho - \frac{3}{4}\right)\left(4x^2 - 3x - x_0^2\right) + 2\eta'' x_0(1-x) \right] \\ F_{T_1}(x) &= -\frac{1}{12} \left[ 2\left(\xi'' + 12\left(\rho - \frac{3}{4}\right)\right)(1 - x)x_0 + 3\eta(x^2 - x_0^2) + \eta''(3x^2 - 4x + x_0^2) \right] \\ F_{T_2}(x) &= \frac{1}{3}\sqrt{x^2 - x_0^2} \left( 3\frac{\alpha'}{A}(1-x) + \frac{\beta'}{A}(2-x_0^2) \right) \end{split}$$

Denis Bodrov

Tau physics program at Belle II

25

21

# MP parameters through coupling constants

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} \left[ \left( |g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} \right) + 2 \left( |g_{LR}^{T}|^{2} + |g_{RL}^{T}|^{2} \right) + \Re \left\{ g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*} \right\} \right] \\ \eta &= \frac{1}{2} \Re \left\{ g_{RL}^{V} \left( g_{LR}^{S*} + 6g_{LR}^{T*} \right) + g_{LR}^{V} \left( g_{RL}^{S*} + 6g_{RL}^{T*} \right) + \left( g_{RR}^{V} g_{LL}^{S*} + g_{LL}^{V} g_{RR}^{S*} \right) \right\} \\ \xi &= 4 \Re \left\{ g_{LR}^{S} g_{LR}^{T*} - g_{RL}^{S} g_{RL}^{T*} \right\} + \left( |g_{LL}^{V}|^{2} - |g_{RR}^{V}|^{2} \right) + 3 \left( |g_{LR}^{V}|^{2} - |g_{RL}^{V}|^{2} \right) \\ &+ 5 \left( |g_{LR}^{T}|^{2} - |g_{RL}^{T}|^{2} \right) + \frac{1}{4} \left( |g_{LL}^{S}|^{2} - |g_{RR}^{S}|^{2} + |g_{RL}^{S}|^{2} - |g_{LR}^{S}|^{2} \right) \\ \xi \delta &= \frac{3}{16} \left( |g_{LL}^{S}|^{2} - |g_{RR}^{S}|^{2} + |g_{RL}^{S}|^{2} - |g_{LR}^{S}|^{2} \right) + \frac{3}{4} \left( |g_{LL}^{V}|^{2} - |g_{RR}^{V}|^{2} - |g_{LR}^{T}|^{2} \right) \\ &+ |g_{RL}^{T}|^{2} + \Re \left\{ g_{LR}^{S} g_{LR}^{T*} - g_{RL}^{S} g_{RL}^{T*} \right\} \right) \end{split}$$

# MP parameters through coupling constants (2)

$$\begin{split} \xi' &= -\left[3\left(|g_{RL}^{T}|^{2} - |g_{LR}^{T}|^{2}\right) + \left(|g_{RR}^{V}|^{2} + |g_{RL}^{V}|^{2} - |g_{LR}^{V}|^{2} - |g_{LL}^{V}|^{2}\right) \\ &\quad + \frac{1}{4}\left(|g_{RR}^{S}|^{2} + |g_{RL}^{S}|^{2} - |g_{LR}^{S}|^{2} - |g_{LL}^{S}|^{2}\right)\right] \\ \xi'' &= 1 - \frac{1}{2}\left(|g_{RL}^{S}|^{2} + |g_{LR}^{S}|^{2}\right) + 2\left(|g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} + |g_{RL}^{T}|^{2} + |g_{LR}^{T}|^{2}\right) \\ &\quad + 4\Re\left\{g_{RL}^{S}g_{RL}^{T*} + g_{LR}^{S}g_{LR}^{T*}\right\} \end{split}$$

$$\eta'' = \frac{1}{2} \Re \left\{ 3g_{RL}^{V} \left( g_{LR}^{S*} + 6g_{LR}^{T*} \right) + 3g_{LR}^{V} \left( g_{RL}^{S*} + 6g_{RL}^{T*} \right) - \left( g_{RR}^{V} g_{LL}^{S*} + g_{LL}^{V} g_{RR}^{S*} \right) \right\}$$
$$\frac{\alpha'}{A} = \frac{1}{2} \Im \left\{ g_{LR}^{V} \left( g_{RL}^{S*} + 6g_{RL}^{T*} \right) - g_{RL}^{V} \left( g_{LR}^{S*} + 6g_{LR}^{T*} \right) \right\}$$
$$\frac{\beta'}{A} = \frac{1}{4} \Im \left\{ g_{RR}^{V} g_{LL}^{S*} - g_{LL}^{V} g_{RR}^{S*} \right\}$$

Denis Bodrov



SuperKEKB accelerator @Tsukuba, Japan





Belle II detector

» arXiv:1011.0352 (Technical Design Report)