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ALICE Goals for Run 3

Upgrade detectors for better resolution.
Access low S/B “untriggerable” signals.
Gather significantly more statistics, i.e. record all Pb-Pb collisions at higher interaction rate.

8.4.2023 David Rohr,
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LS2 ALICE Upgrades *

i‘\

ALICE

Pixel Muon Forward Tracker

GEM-based
TPC readout

New detectors:

— T — « Improve tracking resolution at low p;
e =300 V .
- = —> thinner, more granular
=AV = 288 Vw7 =20 V _
- « Enable continuous read-out
s =2 =800V _ _ _ ... and much more:
i * New online-offline computing system » Fast Interaction Trigger
pad plane * New 50x faster readout system
for sync.hronous and asynchronous . Readout upgrade of MUON, TOF,
processing EMCAL, PHOS
8.4.2023

David Rohr, drohr@cern.ch


mailto:drohr@cern.ch

ALICE TPC upgrades and implications

* Need continuous TPC (Time Projection Chamber) readout to store full minimum bias sample.
e TPCof Run 1 and 2 used MWPC (Multi Wire Proportional Chambers) readout and gating grid to suppress ion back flow.
*  Gating grid limits readout to ~3 kHz, prevents continuous readout.

- Replace MWPCs with GEMs (Gas Electron Multiplier),
Intrinsic ion back flow blocking (99%), no gating grid.

charged particle track

drifting electrons from
primary ionization

gating plane _
NG
SRENG =
) :
cathode plane ; X
\:

anode plane X

pad plane

z (drift time)
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8.4.2023

LS2 ALICE Upgrades

TIME PROJECTION
CHAMBER (TPC)
UPGRADE

New GEM (gas electron
multipliers) technology replaced
the old wire chambers to
significantly increase the readout
rate of the TPC.

NEW FAST INTERACTION TRIGGER (FIT)
Combining three detector technologies, the FIT
detector serves as an interaction trigger, online
luminometer, indicator of the vertex position and

forward multiplicity counter.

N monolithic active silicon pixel sensors distributed
M over a 10m? surface area, the largest pixel
detector ever built.

NEW MUON FORWARD
TRACKER (MFT)

Five disks of monolithic active
silicon pixel sensors, installed in
front of the muon spectrometer to
extend precision measurements to
the forward rapidity region.

NEW READOUT SYSTEM
The new readout system is
designed to handle increased
data throughput by combining
all the computing functionalities
needed in the experiment.

NEW BEAMPIPE WITH A SMALLER
DIAMETER (36.4 mm)

The vacuum tube that carries protons and ions

to the collision point inside the detector has an
870-mm-long central beryllium section that has an
inner radius of 18.2 mm and measures 0.8 mm in
thickness.

David Rohr, drohr@cern.ch
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ALICE in Run 3

Targeting to record large minimum bias sample.
- Access low S/B “untriggerable” signals
- All coIIisions stored = no trigger

- Overlapping events in TPC with realistic bunch"str‘ucture @ 50 kHz Pb-Pb.
- Timeframe of 2 ms shown (will be 10 — 20 ms in production).
- Tracks of different collisions shown in different colors.

David Rohr,
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"% The tracking challenge

ALICE

« Tracking continuous data...

The TPC sees multiple overlapped collisions (shifted in time).
Other detectors know the (rough) time of the collision.

. Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.
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"% The tracking challenge

ALICE

« Tracking continuous data...
The TPC sees multiple overlapped collisions (shifted in time).

Other detectors know the (rough) time of the collision.

8.4.2023
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Problem: TPC clusters have no defined z-position but
only atime. They can be shifted in z arbitrarily.

Particledic)ectony
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"% The tracking challenge ,
, ALICE

« Tracking continuous data... +  Problem: TPC clusters have no defined z-position but
«  The TPC sees multiple overlapped collisions (shifted in time). only atime. They can be shifted in z arbitrarily.

*  Other detectors know the (rough) time of the collision.

¥ % %

TOF
~
>

Particledic)ectony

X (radial direction)

\\Drift Tlep)e proportional
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End Plate
+

Z (beam and TPC drift direction) »
Vertex (Collision 2)
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"% The tracking challenge <

« There are 2 (related) main challenges caused by continuous readout / space charge distortions
*  How to assign a z-position to a cluster?
*  How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.
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The tracking challenge %

ALICE_

« There are 2 (related) main challenges caused by continuous readout / space charge distortions
How to assign a z-position to a cluster?
How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.

+ ¥+ + 6
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X (radial direction)

TRD

|
TPC space charge distorts the clusters.

%ﬁf + + This can be corrected, but the correction
<\’>>++<:>> depends on the z position of the cluster
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TPC Tracking

« There are 2 (related) main challenges caused by continuous readout / space charge distortions
*  How to assign a z-position to a cluster?
*  How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.

¥+ + + 51
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7

X (radial direction)

TRD

. Standalone ITS tracking.
. Standalone TPC tracking, scaling t linearly to an arbitrary z.

‘f;, e +
Precise tracking needs z for:
» Cluster error parameterization

* Inhomogeneous B-field

TPC

« time + Distortion correction
LS
\ n
<‘V",~‘é> = Effects smooth >
- irrelevant for initial trackletting

NA

(beam and TPC drift direction)
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TPC Tracking

ALICE

« There are 2 (related) main challenges caused by continuous readout / space charge distortions
*  How to assign a z-position to a cluster?
*  How to apply SCD corrections (inhomogeneous magnetic field, cluster error parameterization) if z is now known.
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. Standalone ITS tracking.

&
+
+
X (radial direction)

. Standalone TPC tracking, scaling t linearly to an arbitrary z.

. Extrapolate to x = 0, define z = 0 as if the track was primary.
. Track following to find missing clusters. For cluster error
%&) parameterization, distortions, and B-field, shift the track such
thatz =0 atx = 0.
. Refine z = 0 estimate, refit track with best precision
‘\‘\‘\ tim% +  Forthe t_racks in one_ITS readout frame, selept all TPC
tracks with a compatible time (from z = 0 estimate).
* . Match TPC track to ITS track, fixing z-position and time of
= the TPC track.
. Refit ITS + TPC track outwards.

NA

(beam and TPC drift direction)
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Processing considerations Ui
ALICE

TPC standalone tracks cannot have a precise time stamp / vertex assignment on their own, but only after matching
to other detectors.

Event reconstruction cannot process a “single event / collision” by design:
*  We know only after the tracking which track belongs to which collision.
« And for tracks not originating clearly from a primary vertex, this is only known with a certain probability.

Data unit for the processing cannot be an “event” like in Run 2.
Instead, we record / process time frames with a configurable length of up to 256 drift times.
«  Smaller drift times leas to more statistic loss due to effects at the time frame boundaries.

« Larger time frames need more memory for the processing.
*  Current compromise is 32 drift times per TF (~2.5 ms of continuous data).

Note that this reduces / simplifies the processing rates (not data rates) a lot.
* Inrun 2 pp we could have several kHz of event rate.
* No we have ~350 Hz of TF rate.
*  This simplifies the scheduling, and makes sure that we send fewer but larger data chunks around.
* Also helps with parallelism in the processing, with larger data chunks processed at once.

8.4.2023 David Rohr, drohr@cern.ch 14
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Readout process Ui
ALICE

* During the readout, data is organized in heart beat frames (HBF) of ~90 us each.
* Each HBF can consist of multiple pages with 8 kb each.
* The data distribution software on the readout nodos aggregates the HBFs into TFs.
* For the detectors / readout, everything is just a continuous stream of HBFs.

* Is all of ALICE triggerless?
» Actually not, several of the detectors were upgraded for full native continuous read out.
* But some “legacy” detectors still require a trigger.
* The CTP tries to trigger these detectors for minimum-bias, i.e. to record all collisions.
— Orif the rate is limited, for the largest possible subset of collisions.

— For instance, the scheme for the TRD foresaw ~40 kHz trigger rate in Run 3, compared to 50 kHz maximum interaction
rate, i.e. only 80% of the events would have TRD contribution.

*  With multiple such detectors, the CTP will ensure to trigger the same subset.

* LHC runs ~half a year of pp compared to 3 weeks of Pb-Pb - We get more pp data then Pb-Pb, even at the relatively
low ALICE interaction rates of 500kHz / 1MHz
« Cannot store all pp data.

- ALICE performs CTF skimming: All pp data is stored to disk first, but then it is skimmed after data taking using physics
analysis triggers to decide which collisions to keep permanently.

8.4.2023 David Rohr, drohr@cern.ch 15
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Readout process

 ALICE uses the Common Readout Unit (CRU) card to receive the optical links from the detectors in the readout farm.

) Detectors can

8.4.2023

The FPGA-based card is developed by LHCb (PCle40), the CRU firmware is developed by ALICE.
Some legacy detectors with low rate still use the C-RORC card (ALICE’s readout card of Run 2).

either send HBFs directly,
or a “user logic” in the CRU creates HBFs out of

the data send by the detectors.
E.g. the TPC sends just a stream of raw ADC values,
the CRU performs common-mode correction, ion tail
filtering, and zero suppression, and then packages
the data into HBFs.
— This is an example of local processing happening
already in the FPGA.

David Rohr, drohr@cern.ch
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The ALICE detector (barrel region) in Run 3

* ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)

 ALICE performs continuous readout.

e Native data unit is a time frame: all data from
a configurable period of data up to 256 LHC orbits.

8.4.2023

7 layers ITS (Inner Tracking System — silicon tracker)
152 pad rows TPC (Time Projection Chamber)

6 layers TRD (Transition Radiation Detector)

1 layer TOF (Time Of Flight Detector)

Default was ~11 ms (128 LHC orbits) before 2023.
Current default is ~2.8 ms (32 LHC orbits)

David Rohr, drohr@cern.ch
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ALICE Raw Data Flow in Run 3

ALICE

O%FLP
(First Level Processors)
~200 2-socket Dell R740
up to 3 CRU per FLP

Zero suppression
in FPGA

=38 TB/s

Central Trigger Processor
Distribution of timing info, heartbeat trigger

David Rohr, drohr@cern.ch 18
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ALICE Raw Data Flow in Run 3

== GPU computing O%EPN
e = o (Event Processing Nodes)
’
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ALICE Raw Data Flow in Run 3

= GPU computing O/EPN
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Synchronous and Asynchronous Processing

Data links from detectors

= =

Readout nodes

Run 3 farm

- Event / timeframe building
- Calibration / reconstruction

=

Synchronous processing
- Local processing

<900 GB/s

3.5TB/s

ng

Disk buffer
= =

Asynchronous processing
Reprocessing with full

1
Data Lkng

Du

~ 130 GB/s

i\

calibration
Full reconstruction

1

Reconstructed Datav

8.4.2023

During
no beam

Compressed

\~ Raw Data
Permanent storage

David Rohr, drohr@cern.ch

GPU computing

O?/EPN

(Event Processing Nodes)
~2000 GPU & CPU

~130 GB/s

CTF: Comressed time frames

Calibration data

disk storage, 360GB/s
(~25% redundancy)

21
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Synchronous and Asynchronous Processing

GPU computing O%EPN

. (Event Processing Nodes)
Data links from detectors 3.5 TB/s ~2000 GPU & CPU
— S = ;??"
Readout nodes [T .
<900 GB/s = =
ONn~o proce O g’ -
ocal proce g g’% ‘
e eframe bullding P ‘g ;
alibratio eco 0 03 CCDB
E o conditions )
ch ~ 130 GB/ database
™ D D 0 \ Calibration data disk storage, 360GB/s
g R (~25% redundancy)
o £
. eln2 lraltets 2 }c»—@/ Asynchronous
Reproce v 5 0 processing
alipratio ()] g
eCOo O

— Compressed
Reconstructed Datav \/ Raw Data @
Permanent storage N - s <

Analysis Facilities
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02 Processing steps

Particle Track
« Synchronous processing (what we called online before): Needs tracking of |
«  Extract information for detector calibration: 1% of tracks
—  Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects__—
—  The most complicated calibration is the correction for the TPC space charge distortions :

Cathode ~~ |

8.4.2023 David Rohr, drohr@cern.ch 23
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02 Processing steps

Particle Track
« Synchronous processing (what we called online before): Needs tracking of e
- Extract information for detector calibration: 1% of tracks -4 AR
—  Previously performed in 2 offline passes over the data after the data taking ,,‘" 0 :% i
—  Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing | L %
— Anintermediate step between sync. and async. processing produces the final calibration objects__— | : g
—  The most complicated calibration is the correction for the TPC space charge distortions :
+ Data compression: < Lol disorions
—  TPC is the largest contributor of raw data, and we employ sophisticated algorithms like S :\ A
storing space point coordinates as residuals to tracks to reduce the entropy and remove 5 — —
hits not attached to physics tracks I Forveardranstomegign -~ Rows
—  We use ANS entropy encoding for all detectors Needs 100% I __"—[ o o
TPC tracking AN, e——
i)

[ Track

8.4.2023 David Rohr, drohr@cern.ch 24
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02 Processing steps

Particle Track
from Collision

* Synchronous processing (what we called online before): Needs tracking of

«  Extract information for detector calibration: 1% of tracks
—  Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects__—
—  The most complicated calibration is the correction for the TPC space charge distortions :
+ Data compression:
— TPCis the largest contributor of raw data, and we employ sophisticated algorithms like

Cathode ~~ |

Local distortions

remain
XY, Z /
Clctor

Row, Pad, Time

storing space point coordinates as residuals to tracks to reduce the entropy and remove H ——*
hits not attached to physics tracks THYHH  Forerd-ransiomgggo >~ Rows
—  We use ANS entropy encoding for all detectors Needs 100% ' __"—(‘ R —
B —————— coordinates
- Event reconstruction (tracking, etc.): TPC tracking D e

— Required for calibration, compression, and online quality control
—  Need full TPC tracking for data compression

— Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)

8.4.2023 David Rohr, drohr@cern.ch 25
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02 Processing steps

Particle Track

« Synchronous processing (what we called online before): Needs tracking of |
- Extract information for detector calibration: 1% of tracks

—  Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

— Anintermediate step between sync. and async. processing produces the final calibration objects _—— |
7
—  The most complicated calibration is the correction for the TPC space charge distortions

« Datacompression:

Cathode ~~ |

Local distortions

—  TPC is the largest contributor of raw data, and we employ sophisticated algorithms like S P\ A
storing space point coordinates as residuals to tracks to reduce the entropy and remove 5 — —
hits not attached to physics tracks I Forveardranstomegign - - o
—  We use ANS entropy encoding for all detectors Needs 10(_)% ' j Track In distorted
« Event reconstruction (tracking, etc.): TPC tracking Qursomaton ™
— Required for calibration, compression, and online quality control
—  Need full TPC tracking for data compression

— Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)

« Asynchronous processing (what we called offline before):
. Full reconstruction, full calibration, all detectors
*  TPC part faster than in synchronous processing (less hits, no clustering, no compression)
- Different relative importance of GPU / CPU algorithms compared to synchronous processing

8.4.2023 David Rohr, drohr@cern.ch 26
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GPU usage in ALICE in the past

* ALICE has along history of GPU usage in the online systems, and since 2023 also for offline:

2010
64 * NVIDIAGTX 480 in Run 1

8.4.2023

2015
180 * AMD S9000 in Run 2
Online TPC tracking

David Rohr, drohr@cern.ch

Today
>2000 * AMD MI50 in Run 3
Online and Offline barrel tracking

27
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Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Synchronous processing Asynchronous processing
(50 kHz Pb-Pb, MC data) (650 kHz pp, real data, calorimeters not in run)
TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %
EMCAL Processing 0.20 % ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10 % MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10 % TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09 % ITS Tracking 4.16 %
MFT Processing 0.02 % TOF Matching 412 %
TOF Processing 0.01 % TRD Tracking 3.95 %
TOF Global Matching 0.01 % MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01 % AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08 % Rest 2.32%

Only data processing steps
Quality control, calibration, event building excluded!

8.4.2023 David Rohr, drohr@cern.ch 28
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Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Totally dominated
Synchronous processing by TPC: >99% Asynchronous processing
(50 kHz Pb-Pb, MC data)

Processing step

TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %

EMCAL Processing 0.20 % ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10 % MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10 % TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09 % ITS Tracking 4.16 %
MFT Processing 0.02 % TOF Matching 412 %
TOF Processing 0.01 % TRD Tracking 3.95 %
TOF Global Matching 0.01 % MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01 % AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08 % Rest 2.32%

Only data processing steps
Quality control, calibration, event building excluded!
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Overview of compute time of reconstruction steps
ALICE

* Synchronous processing :

*  99% of compute time spent for TPC.

« EPN farm build for synchronous processing!
« Asynchronous reprocessing :

; *  More detectors with significant computing contribution.
Synchronous processing

(50 kHz Pb-Pb, MC data) * To be kept in mind, as EPNS also run async. Reco.
+  GPUs well suited for TPC reco (from Run 1 and 2 experience).
rocessing racking, ustering, Compression . (0 3 5
EMCAL Processing 5o GPUs provide the required compute power.
ITS Processing (Clustering + Tracking) 0.10 % * Time frame concepts yields large enough GPU data chunks.
TPC Entropy Encoder 010% <+ Following up 2 scenarios for EPN GPU processing:
ITS-TPC Matching 0.09 %
MFT Processing 0.02 % Baseline solution (available today):
TOF Processing 0.01 % - Mandatory for synchronous processing
TOF Global Matching 0.01 % TPC sync. reco on GPU
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 % Optimistic solution (under development):

- Achieve best GPU usage in async phase
- Run most of tracking + X on GPU

Only data processing steps
Quality control, calibration, event building excluded!

8.4.2023 David Rohr, drohr@cern.ch 38
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¢'% Central barrel global tracking chain

ALICE

Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:
Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.
Optimistic scenario includes everything related to the barrel tracking.

TPC Cluster

Part of baseline
scenario

TPC Cluster
Finding

In operation
Work in progress
Under study

e

\“:ﬂ* 9 m\‘?%.
NHHHI

N

NN

TPC Distortion Correction

TPC Track l TPC Track . TPC

Finding Merging Track Fit

ITS ITS Track ITS
Vertexing Finding Track Fit

Common GPU

Components:

SRR
\ \\.\:\,3:

TPC Track Model
Compression

removal

NN

SRR

\';:\

<

A

GPU API Framework Material Lookup
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Plugin system for multiple APIs with common source code
ALICE

* Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).
*  OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing)
«  Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library
+ All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers

« Screening different platforms for best price / performance. Algorithm.cxx lIDFit i Fifrsias ¢ ises arst] oot ] ot wcks .
N . " . . I[Every fitter processes a sub-range n of N thal is ortional to its speed ..
(including some non-competitive platforms for cross-checks and validation.) GPU( voi FiTrack it e — =
' Og\tlel?:s r(IEE’UaS:s:tances of Fitter class, does multi-device

«  CPUs (AMD Zen, Intel Skylake)
C++ backend with OpenMP, AMD OCL

sdefine GPU() management and scheduling. Can request particular or
Hinclude “Algorithm.oxc multiple devices or fall back to CPU automatically
class FitterBase { _ :
virtual void FitTracks(int n} { IbFRtCu = diopen....)
#pragma omp parallel for [-1
{{ = 0;i < n;i*+) Fi i
for (int] = O:f < mib+) FRTrCk(l): | | py i aser fitters: int nf= 0;

} } fitjnf++] = new FitterBase;

- AMD GPUs
(S9000 with OpenCL 1.2, MI50 /

if (libFitCu) for (i = 0ii < cudalnterface->Count();i++)
fitters[nf++] = cudalnterface->GetFitter();

if (IBFHCI) for (i = 0:i < clinterface->Count();i++)
H fitters[nf++] = clinterface->GetFitter();
included "

%
-

three times aawie dlopen L8

: m— LY
libFitCUDA | aeriizs],__ libFitOpenCL

FitterCUDA.cu

0 NVIDIA GPUs
(RTX 2080/ RTX 2080 Ti/ Tesla T4
with CUDA)

FitterOpenCL.cl FitterOpenCL.cxx

#define GPLU() #define GPU()
#include “Algorithm.cxx” class FitterOpenCL :: public FitterBase {

*  ARM Mali GPU with OCL 2.x

#define GPU() __device
#include “Algorithm.cxx™

H H class FitterCUDA : public FitterBase wirtual void FitTracks(int n) {
(Tested on dev-board with Mali G52) " dobi FilTiackeGPUGt D Tack()) __kemel void FifTracksGPU(int 1) clEnqueueNDRangeKernel(...)
virtual void FitTracks(int n) { FitTrack(i);

FitTracksGPU<=c<n>>>(); static MuliGPUManagerCL man;

static MultiGPUManagerCUDA man;
}

Manage / synchronize multiple GPUs

] linked to GPU shared object file ||
libCUDA | | libOpenCL
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Implementation principles Ui
ALICE

. GPU code should be modular, such that individual parts can run independently.
*  Multiple consecutive components on the GPU should operate with as little host interaction as possible.

'_\

)

GPU code should be generic C++ and not depend on one particular vendor or API. (O2 supports CUDA, HIP, OpenCL)
* No usage of special features that are not portable.

3. GPU usage should be optional and transparent: running O2 should not require any vendor libraries installed.
All GPU code is contained in plugins, with a common interface.
*  Even multiple plugins (GPU backends) can run on the same node.

4. Minimize time spent for memory management.
We allocate one large memory segment, and then distribute memory chunks internally.

5. Processing on GPU and data transfer should overlap, such that the GPU does not idle while waiting for data.
« This is implemented via a pipelined processing within time frames, and we also overlap consecutive time frames.

6. Datachunks processed by the GPU must be large enough to exploit the full parallelism.
Fulfilled by design with TFs containing > 100 collisions.

7. GPU and CPU output should be as close as possible.
« But small differences due to concurrency or non-associative floating point arithmetic cannot be avoided.
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Implementation details

ALICE

* Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2virtual EPNSs.
« Still only 1 HCA for the input - writing to shared memory segment in interleaved memory.

» GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU each, or run CPU only tasks.

* GPUs can be shared between algorithms.
*  With memory reuse if within the same process.
*  With separate memory in case of multiple processes (Not done at the moment).
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Implementation details %

* Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2 virtual EPNs.
« Still only 1 HCA for the input - writing to shared memory segment in interleaved memory.

» GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU, or run CPU only tasks.

* GPUs can be shared between algorithms.
*  With memory reuse if within the same process.
«  With separate memory in case of multiple processes (Not done at the moment).

« Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:
« ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCle negligible.

a
I

Selected server:
*  Supermicro AS-4124GS-TNR, 8 * MI50 GPU, 2 * 32 core AMD Rome 7452 CPU (2.35 GHz), 512 GB RAM (16 * 32GB)
* Infiniband HDR / HDR100 network.
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Implementation details

its-tracker

4 itstpe-track-matcher_ta
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DPL workflow
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, ius-tracker i tstpe-track-matcher_ta

Synchronous processing
DPL workflow
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Implementation details

ALICE_

To illustrate the complexity:
Full synchronous workflow including
Quiality Control and Calibration
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Synchronous processing performance

ALICE

+ Performance of Alice O2 software on different GPU models and compared to CPU.

350 T T T T 18 T T T T T
f NVIDIA RTX 3090 NVIDIAALOO
> NVIDIARTX 2080 Ti . AMD MI100

E . 16 - * NVIDIARTX 1080 Ti AMD MI50 -
(3-. 300 7 ) NVIDIAV100s
E 14 - q
é 250 - i " ' 3
= s o+ T i i * S 12 | ALICE Performance 42 .
B 1ot [ Pb-Pb VS = 5.02 TeV
9 200/ Ot ALICE Performance s 2 b g
¥ Pb-Pb VSyy = 5.02 TeV s 10
£ : = * o
%150—- om B rﬂj]:l_IE"H oo 00 g0 O O o om A E Bf x* A o O J
E @;‘f\x L e \ 6 R e=e i 1
5 100 [+ : i : ] e L v
B 3 P 3 X ,:/'I— b
2 v 4+ xe ] e e
0 - ] >§K e 5 Dl‘l Lt
E 50 [, KKK W ORE X X NVIDIARTX 3090 + NVIDIAAL00 1 w éﬁ e it ‘
=z NVIDIA RTX 2080 Ti X AMD MI100 2 - ﬁ‘* / ﬁ Pt g 3

E§ NVIDIARTX 1080 Ti % AMD MI50 R;F%j H g5 L

- NVIDIAV100s [ Lt RRR B &

0 1 1 | 1 L > 1 1 Il 1 1
0 5x10" 1x10° 1.5x10% 2x10° 2.5x10% 3x10° o 0 5x107 1x10% 1.5x108 2x108 2.5x108 3x108
Number of TPC clusters Number of TPC clusters
» ALICE uses 2240 MI50 and 560 MI100 GPUs in the EPN farm.
« MI50 GPU replaces ~80 AMD Rome CPU cores in synchronous reconstruction. Without GPUs, more than 2000
« Includes TPC clusterization, which is not optimized for the CPU! 64-core ser\ll_ers would be n'eeded for
. . T . online processing'
« ~55 CPU cores in asynchronous reconstruction (more realistic comparison). P 9
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Overview of compute time of reconstruction steps

ALICE

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.
*  Synchronous reconstruction fully dominated by the TPC (99%), no reason to offload anything else to the GPU.
. In async reco, currently the 61.4% TPC are on the GPU, with the full optimistic scenario (full barrel tracking) it will be 79.77%.

Synchronous processing
(50 kHz Pb-Pb, MC data, processing only)

TPC Processing (Tracking, Clustering, Compression) 9937 %
EMCAL Processing 0.20 %
ITS Processing (Clustering + Tracking) 0.10 %
TPC Entropy Encoder 0.10 %
ITS-TPC Matching 0.09 %
MFT Processing 0.02 %
TOF Processing 0.01 %
TOF Global Matching 0.01 %
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 %

Asynchronous processing
(650 kHz pp, real data, calorimeters not in run)

TPC Processing (Tracking) ~ 6141%
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 412 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%

Running on GPU in baseline scenario |
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Overview of compute time of reconstruction steps
ALICE

« Async reco GPU speedup on the EPN:

The speed of light is ~6.5x speedup, since 85% of the compute power is in the GPU (reduce the CPU time by 85%, more becomes GPU-bound).
—  Only in case everything scales as well as TPC processing.

— Even then cannot be reached since GPU processing needs CPU resources.

Today, offloading the ~60% of the async to the GPU should yield a speedup around 2.5x.

—  We remove 60% of the CPU time, while we are st|I.I pPU—bound, Asynchronous processing
but we have some overhead CPU resources for driving the 8 GPUs. ] 4
(650 kHz pp, real data, calorimeters not in run)

In the optimistic scenario, by offloading 80% we might get close to 5x.

—  still a bit away from the speed of light.
TPC Processing (Tracking) ~ 6141%
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 412 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%
Running on GPU in baseline scenario |
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Real speedup in asynchronous reconstruction
ALICE

For asynchronous reconstruction, EPN nodes are used as GRID nodes.
Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
EPN farm split in 2 scheduling pools: synchronous and asynchronous.
Unused nodes in the synchronous pool are moved to the asynchronous pool.
As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

If needed immediately, GRID jobs are killed and nodes moved immediately.

42
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Real speedup in asynchronous reconstruction %
ALICE

 For asynchronous reconstruction, EPN nodes are used as GRID nodes.
« ldentical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
* EPN farm splitin 2 scheduling pools: synchronous and asynchronous.
— Unused nodes in the synchronous pool are moved to the asynchronous pool.
— As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.
— If needed immediately, GRID jobs are killed and nodes moved immediately.
« Performance benchmarks cover multiple cases:
« EPN splitinto 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.
* EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.
* Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).
* In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s
CPU 16 core 34.18s 4.27s —
1 GPU + 16 CPU cores 14.60s 1.83s
1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

B

Factor 2.51
Matches expected factor 2.5
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Real speedup in asynchronous reconstruction %
ALICE

 For asynchronous reconstruction, EPN nodes are used as GRID nodes.
« ldentical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
* EPN farm splitin 2 scheduling pools: synchronous and asynchronous.
— Unused nodes in the synchronous pool are moved to the asynchronous pool.
— As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.
— If needed immediately, GRID jobs are killed and nodes moved immediately.
« Performance benchmarks cover multiple cases:
« EPN splitinto 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.
* EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.
* Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).
* In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core . . . 6.91s 4.81s
Configuration used for async processing

CPU 16 core (Also resembles most the synchronous B4.18s 4.27s —

1 GPU + 16 CPU cores processing configuration) 4.60s 1.83s

B

Factor 2.51
Matches expected factor 2.5

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s
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Conclusions %

ALICE_

* ALICE has switched to continuous read out in Run.
Enables the storage of all events, can access low S/B signals.
~100x more data than in Run 2 (50 kHz interaction rate v.s. 500 Hz trigger rate).
Required an upgrade of the detectors, readout systems, and computing scheme.

« ALICE employs GPUs heavily to speed up online and offline processing.
*  99% of synchronous reconstruction on the GPU (no reason at all to port the rest).
*  Today ~60% of full asynchronous processing (for 650 kHz pp) on GPU (if offline jobs on the EPN farm).
—  Willincrease to 80% with full barrel tracking (optimistic scenario).

Synchronous processing successful in 2021 - 2023.
* pp datataking and low-IR Pb-Pb went smooth and as expected, but not causing full compute load.
* Full rate will come with Pb-Pb in October 2023.
— 50 kHz Pb-Pb processing validated with data replay of MC data (~ 30% margin).

Asynchronous reconstruction has started, processing the TPC reconstruction on the GPUs in the EPN farm, and in
CPU-only style on the CERN GRID site.

« EPN nodes are 2.51x faster when using GPUs.
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