
DAQ and Trigger Systems At
Present and Future Neutrino

Experiments

Dr Benjamin Richards (benjamin.richards@warwick.ac.uk)

Introduction (Who am I)

based at Warwick University.
Been working in particle physics for >15 years. Mostly on neutrinos.
Research topics include: DAQ design and development, high performance software, triggering, calibration
systems, supernova neutrinos, solar neutrinos and double beta decay

Currently work on 8 different experiments:
• 3 currently taking data: Super-K, EGADS and ANNIE
• 5 more in design and construction IWCD, WCTE, BUTTON, WATCHMAN and Hyper-K
• Designing the DAQ for a couple more proposed detectors
• Consult on another handful about DAQ.

In charge of DAQ design and implementation for (Hyper-K, IWCD, WCTE, BUTTON, WATCHMAN and ANNIE)
experiments.

Author of advanced software framework ToolFramework (used for analysis, simulation, reconstruction etc)
And a derived DAQ framework ToolDAQ, (used for building test-stands to full detector DAQ systems).

2

Detectors

• Rather than describe the DAQ systems for all 8 experiments, their eccentricities and unique
features that may not cross over into your experiments. I thought it would be more useful to
explain the technology choices behind the some of them, the design principles and thinking and
how we are applying to the next generation of detectors.

Hyper-k (~35,000 pmts, 19,000 in MPMTs)

Button (~120 pmts, LAPPDS)
ANNIE (~300pmts, front veto, muon range
 detector, LAPPS, 4 asynchronous data streams)

WCTE (~1900 pmts, aerogel and
 tof detectors, 2 asynchronous data
streams)

IWCD (~6,600 pmts) Super-k (~20,000 pmts)

EGADS (240pmts)

3

What We Want From A Modern DAQ System

• Modular:
• allowing for easy upgrades, maintenance, additions and substitutions

• Scalable:
• Can be easily expanded from testing a couple of sensors on a test bench to tens of thousands of sensors in a

detector

• Fault tolerant:
• If errors happen the system doesn’t go down

• Error correcting:
• If errors happen the system can recover

• Hot swappable:
• Components can be added and removed dynamically

• Reliability / Least downtime

In Hyper-k not miss a supernova that can happen at any time, cant loose any data and system must
last for 20+ years.

4

How To Design A Reliable DAQ system

• Remove single points of failure

• However Redundancy is easy, fault
tolerance is harder, fault
correcting even harder again

• Always have to ask what if

“X” goes wrong

5

Communications / Networking (hardware)

When connecting your detector electronics to your read out system you have a couple of
choices.

• Custom link / protocol
• Not routable
• Can be faster
• More labour intensive
• Custom hardware and software
• Usually very low fault tolerance
• Harder to scale

• Standard protocols (e.g. Ethernet)
• Routable
• Have some overheads
• Standard off the shelf components
• Off the shelf implementations
• Tried and tested
• Allow for high fault tolerance and scalability
• Can double up as high precision timing e.g. (white rabbit)

Electronics
Readout
system

Electronics Switch
Readout
systemElectronics
Readout
systemElectronics
Readout
system

6

How To Make Networking Fault Tolerant

What if a link goes down?

Bonding:
Modern SOM can run lightweight Linux that have bonding.
Bonding allows you combine multiple connections to
achieve either increased throughput or fault tolerance
• Round Robbin:- send packets sequentially on each link

(increased bandwidth)
• Active backup:- if one fails the other takes over

(redundancy)
• XOR:- clients distributed on links
• Broadcast: replicated output
• 802.3ad:- switch negotiated packet distribution
• tlb:- adaptive transmit load balancing on sending
• alb:- uses above plus arp requests to reroute inbound

traffic.

Electronics
Readout
system

Electronics
Readout
system

7

How To Make Networking Fault Tolerant 2

What if a switch goes down?

Multi chassis link aggregation:
• Each of the redundant links to

your electronics is sent to a
different switch

• Most companies have a form of
switch interconnect to also
handle rerouting traffic over
transparent to clients.

• Can improve bandwidth further
with multiple links to each
switch

Swtich

Readout
system

Switch

Electronics

Switch

Readout
system

Switch

Electronics

8

UDP/IP vs TCP/IP

UDP/IP (fire and forget)
• Routable (good for scaling)
• Simple to implement in hardware (e.g. FPGAs)
• Fast No impact with data size
• Lacks any consistency checking, have to manually

send and receive acknowledge statements and
perform checksums / flow control

• TCP/IP (guaranteed delivery)
• Routable (good for scaling)
• More complex (although IP cores exist). Easier

with Linux on SOM
• Prefers larger packet sizes for good efficiency
• Has built in built in error checking and re-

transmission.

Readout
system

SwitchElectronics

Readout
system

SwitchElectronics

Readout
system

SwitchElectronics

Eventually everything will arrive

Saturating links can cause data loss

9

Advanced API ZeroMQ

What if your readout machine goes wrong? Distributed networking…

On top of TCP/IP protocol a number of message queuing API abstractions exist which can
improve both redundancy and scalability.

These allow simplification of the software writing to allow N-N communications via a
number of abstracted port paradigms.

• Req-Rep: request reply pattern (bi-directional messages are round robbined between
peers)

• Pub-Sub: publisher subscriber pattern (uni-directional messages are sent to all
subscribers [filters can be applied])

• Dealer-Dealer: Asynchronous distributed messaging pattern (bi-directional round
robbibned)

• Dealer-Router: Asynchronous request reply pattern(bi directional round robbibned)
• Push–Pull (pipeline): Connects nodes in a fan-out / fan-in pattern that can have multiple

steps, and loops. This is a parallel task distribution and collection pattern.

RabbitMQ
RocketMQ
FairMQ
ActiveMQ

KubeMQ
IBMMQ
Google pub sub
AmazonMQ

Derivatives

Etc.

10

Allows simple expansion and add new components without any further code
written

• Auto tries to reconnect

• Fair queues and distributes load/data

• Fault tolerance due as data rerouted to active peers

• Does the multiple connection threading for you

• Provides proxies and select functions for multiple socket multiplexing behaviour

ServerClient
Client

Client
Client

Client Server

ServerClient
ServerClient

ServerClient
ServerClient

1:1 N:1

N:N

Scalable without any
changes needed in code

11

Dynamic Scaling/Routing & Hot Swap Ability

• ZMQ by itself does not necessarily give you full dynamic fault recovery. This is because connections
are still defined and made manually (hardcoded)

• What you really need is a way to dynamically adapt to changing topology and create new
connections automatically, removing the need for hard defined detector readout structure.

• This effectively makes your DAQ components hot swappable.
• Component fails its automatically removed form the system, replace it and the replacement is automatically

added
• Need more backend processing power or data rates getting to large, add a new readout machine or trigger

processor and the system integrates it automatically

• To do this every DAQ component would need to know about the existence and state of every other
DAQ component dynamically. This is where the principles of dynamic service discovery can help.

• This also allows decentralisation of your system, you don’t need a single controlling node to
determine how or where peers connect to and control the state of a system.

• Also for allows design in communications where upstream components to not need to know about
downstream components simplifying their communications and making them more robust

12

&
In 2015 faced with designing DAQ systems for multiple experiments at multiple scales, So I built a DAQ
framework ToolDAQ to have all these features (presented at CHEP 2018).

Additionally also a general purpose framework on ToolFramework

Both are still being actively developed in the UK and used by a number of experiments.

It was deigned to incorporate a number of common DAQ features whilst:

1. Being very easy and fast to develop DAQ implementations in a very flexible and
modular way.

2. Including dynamic service discovery and scalable network infrastructure to allow its
use on large scale experiments.

Features
• Pure C++
• Fast Development
• Very Lightweight
• Modular
• Highly Customisable / Hot swappable modules
• Scalable (built in service discovery and control)
• Built in and external Integration libraries and API for

device monitoring and slow control

• Fault tolerant (dynamic connectivity, discovery,
message caching)

• Underlying transport mechanisms ZMQ
• (Multilanguage Bindings) (python)
• JSON formatted message passing
• Few external dependencies (Boost, ZMQ)
• Integrated Node management
• Web and command line frontends

13

• Contains Toolchain which hold dynamic Tool objects (C++ or
python) created from factories.

• These communicate through a transient data storage class

• It allows for flexible complex structures and paradigms,
multithreading, sub toolchains, workers farms etc. etc.

• Full web front end and command line decentralised control
systems

• Dynamic object based Storage and IO class libraries

Currently being used by about 10 particle physics experiments in
multiple roles including test stands, online calibration devices, all
the way to full detector DAQ systems.

A nice feature is that multiple experiments are also using
ToolFramework as their analysis, reconstruction and simulation,
packages. This allows for offline tools to ported onto online
systems as Tools are inter compatible

14

Triggering: Data processing and accelerators

• One place this comes in handy is triggering, reconstruction and event building, as we can use the same tools
online and offline. The framework also allows you to produce dynamically scalable job farms for the processing
of event data (see next slide)

• We also make heavy use of accelerator cards (FPGAs or GPUs) in our detector triggering systems.

FPGAs
• Can be faster
• More expensive / less availability
• Less energy efficient
• Not general purpose (without firmware changes)
• Harder to program for (although some implementations of using C++ and C++ to Verilog exist)

GPUs
• Cheaper
• Better availability
• More energy efficient
• General purpose
• Easy to program for libraries for multiple languages

15

Triggering In Hyper-K
• In hyper-k we make use of an online trigger farm using GPU accelerators and an event building farm

all using a broker assisted paradigm.
• This allows us to ensure no data loss as triggering and event building jobs are tracked by the brokers

and resubmitted in the event of hardware failure and that workload is balanced across nodes
• The triggering software itself running on the nodes intelligently manages CPU and GPU resources

dynamically scaling threads and distributing work loads and has flexible expandable algorithms

RBU

TPU

RBU
RBU

RBU

TPU
TPU

TPU
TPU

EBU

Broker

EBU
EBU

EBU
EBU

1) Assign time
slice trigger job

2) Request
relevant hit data

3) hit data sent
4) Return trigger decision
and request new job

5) Assign
readout job

6) Request
relevant hit data

7) hit data sent

8) Confirm written out
 and request new job

DAQ only
MC only
Both

Receive Data

MC file
reader

DAQ format converter

Sort Calibrate Mask

Nhits

Test vertices

Calibration

Zero bias Output writer

To Fast reconstruction

From
DAQ

Receive Data
Receive Data

Receive Data

Sort Calibrate Mask
Sort Calibrate Mask

DAQ format
converter

Nhits

Test vertices

Calibration

Zero bias

Nhits

Test vertices

Calibration

Zero bias

Nhits

Test vertices

Calibration

Zero bias

Results collateSort Calibrate Mask

DAQ format
converter

long

long

long

medium

medium

medium

short
short
short

Threads
1 2 3 4 5 6

1 2 3 4 5 6

Time

Time

16

Readout Buffer Units

Event Builder Units

Broker

Trigger Processor Units

Front End Interfaces Slow control and monitoring

More and more of our work is done remotely. X window forwarding or VNC clients
are slow, so custom local applications are less favourable.

Also need solutions that can last for 20+ years and still be supported allow for
multiple clients, so we opt for web based interfaces. These make use of backend
server side socket coms (via ZMQ and web sockets) and databases to provide,
monitoring information, detector configuration and slow controls.

As much of the workload as possible can also be pushed client side with JavaScript
and web assembly e.g. for rendering for plots monitors and event displays.

How do you make build in fault tolerance and scalability?

17

Backbends Reverse proxy / custom solutions

• Can have more servers for redundancy. However then you need to handle
synchronisation and work load balancing (hot swapping?)

• For web servers this is easier, off the shelf solutions exist for reverse proxies like
Nginx that allows a single server to offload its workload to multiple backend
components

• Not necessarily going to work for SQL databases (notoriously difficult) its ok if you
want cold or hot spares with replication, but if you want two active running
databases, then you have to manage load balancing data requests and
synchronisation. etc etc.

• In Hyper-K we address this with a custom middle man software built using ToolDAQ
that allows for a scalable number of active running databases that form a Quorum.
Read requests are load balanced between servers with write requests going to a
master and changes disseminated. Automatic promotion occurs in the event of
failure using aided by ToolDAQ’s the built in service discovery

18

Virtualisation High Availability

Virtualisation can help. For a long time now both hardware virtualisation and kernel
level virtualisation(e.g containers) have been around. This allows us to take a single
server and divide up it CPU ram HDD resources as we see fit, allowing us to treat is
as multiple machines.

When paired with multiple servers and a suitable hypervisor (VMWARE, Proxmox)
and a shared storage (more on that in a second) we can also acheive high
availability.

We have a quorum of servers that monitor each others state and the state of
containers and virtual machines running on them.

Allows live migration (sub 10ms down time) and also allows high availability, where
if the quorum sees a virtual machine is down it can automatically boot a
replacement on a running server. Shared storage and/or snapshots allow for the
server to start up and not loose data.

19

Data Storage

• How do we improve fault tolerance of data storage?

• Raid is ok:
• Raid 0: striped (no drive failures)
• Raid 1: mirrored (1 drive failure)
• Raid 5 & 6: parity info (1-2 drive failures)
• Raid 10…. 50…60: extra redundancy

• Hardware raid used to be a thing, built in battery cache to aid power cycle losses.
However hardware raid has issues and is effectively dead in modern day systems
design.

• Software implementations mdadm, ZFS, butterFS, lvm are the better option these
days, as can provide better consistency checks and scalable and mismatched
raided storage. However they still have the issue they are not distributed storage
solution (i.e. loose your raid server loose your access to data)

20

Distributed File Storage Solutions

• Have multiple backup copies so multiple servers with multiple raid arrays
so the data is protected.

• If you want these available at the same time and with load balancing etc,
your looking at writing custom software.

• Better solution, Ceph / WEKA. Distributed file storage. Have a quorum of
servers that all over the network act as a single storage volume using
deterministic file locations (so no query overhead) .

• Self healing, self managing storage solution with multiple data copies

• Can handle tiered storage and different storage media (SSD HDD etc)

• Does require fast networking for decent IO speeds (10Gb+)

21

Server Resource monitoring

• It’s important to monitor DAQ
system resources and networking
throughput.

• Many options exist for SNMP,
however we use Zabbix

22

Hyper-K Reference Design

FEE

FEE

Switch
1Gbps

RBU

FEE

FEE

Switch
1Gbps

RBU

X ~960

X 48

1 Gb/s

20 Gb/s

40 Gb/s

Broker

EBU

Offsite
backup/
processing

SN
TPU

X 2

X 2

X 56

Calibration

Monitoring
UK DAQIn

Water

DEV
TPU

Switch
40/100

Switch
100Gbps

Switch
40/100

Switch
100Gbps

Switch
40/100

Switch
40/100

Switch
40/100

Switch
40/100

Switch
100Gbps

Switch
100Gbps EBUEBUEBUEBU

DEV
TPU

TPUTPUTPUTPUTPUTPUTPUTPU

SN
TPU

Broker

Monitoring

Calibration

200 Gb/s

25 Gb/s

50 Gb/s

X 4 X 6 X 6 X 2

X 2

X 2

X 2

X 26

X 2

X 5

Calibration
Gateway

20 Gb/s

X 2

x100 Gb/s

Max
Throughput
20(40) Gbps 480(960)Gbps160(320)Gbps

160(320)Gbps
160(320)Gbps 480(960)Gbps

23

Thank You

Any Questions?

24

	Slide 1: DAQ and Trigger Systems At Present and Future Neutrino Experiments
	Slide 2: Introduction (Who am I)
	Slide 3: Detectors
	Slide 4: What We Want From A Modern DAQ System
	Slide 5: How To Design A Reliable DAQ system
	Slide 6: Communications / Networking (hardware)
	Slide 7: How To Make Networking Fault Tolerant
	Slide 8: How To Make Networking Fault Tolerant 2
	Slide 9: UDP/IP vs TCP/IP
	Slide 10: Advanced API ZeroMQ
	Slide 11
	Slide 12: Dynamic Scaling/Routing & Hot Swap Ability
	Slide 13: &
	Slide 14
	Slide 15: Triggering: Data processing and accelerators
	Slide 16: Triggering In Hyper-K
	Slide 17: Front End Interfaces Slow control and monitoring
	Slide 18: Backbends Reverse proxy / custom solutions
	Slide 19: Virtualisation High Availability
	Slide 20: Data Storage
	Slide 21: Distributed File Storage Solutions
	Slide 22: Server Resource monitoring
	Slide 23: Hyper-K Reference Design
	Slide 24: Thank You Any Questions?

