

Workshop on Realtime Machine Learning Gießen 2024

Marc Neu, Jürgen Becker, Philipp Dorwarth, Torben Ferber, Lea Reuter, Slavomira Stefkova, Kai Unger

www.kit.edu

Al Trigger Group at Belle II

Christian Kiesling

Alois Knoll

MAX-PLANCK-GESELLSCHAFT

Motivation

Upgrade of the Belle II CDC Trigger System

Upgrade of the Belle II CDC Trigger System

Figure from Lea Reuter

Upgrade of the Belle II CDC Trigger System

Figure from Lea Reuter

Belle II Central Drift Chamber : First-Level Trigger

- 14336 sense wires at 32 MHz trigger input rate
- 5 us first-level trigger budget
- Apprxomately 1us for graph building and GNN inference
- Minimizing latency is crucial

Requirements for Graph Building

- Hard real-time constraints
- Latency in the order of O(100ns)
- Up to 14336 inputs with undefined degree of sparsity
- Throughput of 32 · 10⁶ events per seconds

Requirements for Graph Building

- Hard real-time constraints
- Latency in the order of O(100ns)
- Up to 14336 inputs with undefined degree of sparsity
- Throughput of 32 · 10⁶ events per seconds

Objective

GNN edge classification has shown promising performance for background rejection [1] (See previous Talk Greta Heine)

Hardware-efficient graph building remains an open challenge [2]

How to build graphs on FPGAs under latency constraints in high-throughput particle physics applications based on an algorithmic description

[1] DeZoort et al. Charged Particle Tracking via Edge-Classifying Interaction Networks. In Comput Softw Big Sci 5, 26 (2021). [2] A. Elabd et. Al, Graph Neural Networks for Charged Particle Tracking on FPGAs. In Front. Big Data (2022).

12 10 April 2024

Institut für Technik der Informationsverarbeitung īΤīV

Graph Building

State of the Art

Graph Building under Local Constraints

K-Nearest Neighbour Graphs [1]

Approximate k-NN Graphs [2]

- Use information at design-time to identify edge candidates
- Intrinsic parallel algorithms
- Similarity to pattern-based track reconstruction

[1] Data Algorithms. O'Reilly Media, Inc. (2015).

[2] Zhang et. Efficient Large-Scale Approximate Nearest Neighbor Search on OpenCL FPGA. IEEE/CVF (2018).

k-NN Graphs and ε-NN Graphs

For uniformly distributed datasets, connecting an element x_i to a given number of nearest neighbours is essentially equivalent to connecting it to all such nodes $d(x_i, x_j) < \epsilon^*$ with some appropriate ϵ^* [1]

A parameter ϵ^* should exists, such that the constructed ϵ -NN graph resembles a k-NN graph [1]

[1] Prokhorenkova, L., Shekhovtsov, A.: Graph-based nearest neighbor search: From practice to theory. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp.7803–7813. PMLR

Similiarity Metrics

- For each event, we define
 - E_k as the set edges for the k-NN graph
 - E_o as the set of edges for the locally constrained graph, e.g. ϵ -NN or p-NN
- Without considering difference in track or noise hits we define

$$Precision = \frac{|E_k \cap E_o|}{|E_o|} \text{ and } Recall = \frac{|E_k \cap E_o|}{|E_k|}$$

If *Precision* \approx 1 and *Recall* \approx 1, two graphs are considered similar

Case Study: Evaluation Setup

- Benchmark on simulated 2000 simulated events
- We consider

 $e^+e^- \to \mu^+\mu^-(\gamma)$

Simulated beam background corresponding to

 $\mathcal{L}_{beam} = 6.5 \cdot 10^{35} cm^{-2} s^{-1}$

- Assuming highest background levels for runs in the next years
- Overall hit distribution is dominated by the beam background signal

Case Study: Graph Building

16 10 April 2024 Marc Neu

Case Study: Graph Building

Case Study: Similarity for k-NN Graphs and ε-NN Graphs

Hyperparameter Search $k \in [1,6]$ and $\epsilon \in [10mm, 28mm]$

Recall

3 2 5 6 0.48 0.69 0.86 0.97 0.99 14 0.99 _ 16 0.48 0.66 0.77 0.86 0.90 0.94 _ Parameter e [mm] 18 0.52 0.68 0.77 0.84 0.88 0.92 _ 20 0.35 0.55 0.73 0.85 0.89 0.92 _ 22 0.31 0.50 0.66 0.78 0.82 0.85 -24 0.29 0.47 0.64 0.79 0.83 0.75 _ 26 0.26 0.43 0.57 0.68 0.73 0.78 _ 28 0.24 0.39 0.54 0.64 0.70 0.75 _ Parameter k

Precision

Case Study: Similarity for k-NN Graphs and ε-NN Graphs

īΤīV

Hyperparameter Search $k \in [1,6]$ and $\epsilon \in [10mm, 28mm]$

Recall

Precision F

		1	2 I	3 I	4 I	5 I	6 I		
		0.48	0.69	0.86	0.97	0.99	0.99		
ي الا	역 -	0.48	0.66	0.77	0.86	0.90	0.94		
mm]	역 —	0.52	0.68	0.77	0.84	0.88	0.92		
re[°2 −	0.35	0.55	0.73	0.85	0.89	0.92		
nete	7 –	0.31	0.50	0.66	0.78	0.82	0.85		
arar 21	– ^t	0.29	0.47	0.64	0.75	0.79	0.83		
Р Ч	07 -	0.26	0.43	0.57	0.68	0.73	0.78		
ä	°1 –	0.24	0.39	0.54	0.64	0.70	0.75		
Parameter k									

Case Study: Similarity for k-NN Graphs and p-NN Graphs

•Hyperparameters $k \in [1,6]$

Thoughts to Go

- Comparing k-NN and ε-NN or p-NN graph building, we find a limited similarity.
- Our analysis reveals that even high beam background can not be considered uniform inside the CDC.
- We follow, that graph building approaches must be evaluated with GNNs for hit cleanup in an algroithm co-design approach.

Thus, we require an semi-automated methodology to evaluate graph building approachs that map well onto FPGAs.

Methodology

- We describe our detector in a database 1
- 2. We define our graph building approach
- We perform an offline similarity evaluation 3.
- We automatically generate a intermediate 4. representation
- 5. We map our intermediate representation to predefined HDL templates in our library

Hardware Architecture

- HDL templates written in Chisel3
- Sensor signals from CDC frontend
 Static sensor features from lookup table
 Generates graph edges for successive GNN Inference

Throughput
$$T = \frac{f_{sys}}{f_{data}} \cdot \frac{1}{N}$$

Case Study: First-level Trigger System Design

						Superlayer	FPGAs	Sensors	Edges
					0	2	664	3293	
	Data Aquisition	x 20 FPG	Hit Cleanup	t Cleanup		1	2	498	2305
	System x 7	Merger x 70	Graph Construction O O O O O	Filter Output	2	2	588	2725	
	Sar	ve CDC frontend signal	0.0.0			3	2	691	3201
	-1 Trigger Input Full CDC					4	2	786	3649
					5	2	882	4097	
	l IITe	Pogistors	RDAM	DSDe		6	2	978	4545
	LUIS	Registers	DRAIVI	0363	CARRI	7	3	730	3372
Ressources	926k	1.85M	3726	1560	11k	8	3	786	3649

For 20 overlapping sectors we receive 2305 < |E| < 4545 and 498 < |V| < 978.

Case Study: Implementation on the Xilinx Ultrascale XCVU160

Total latency L = 39.06*ns* for $f_{clk} = 256 MHz$, corresponding to 10 clock cycles

Conclusion

- We have investigated k-NN, ε-NN and p-NN graph building in the firstlevel trigger at Belle II
- We have proposed an methodology to automatically generate graph building hardware modules on FPGAs
- We have implemented a proof-of-concept of our graph building approach on the Universal Trigger Board 4

Questions?

For more information, check out our publication in the Computing and Software for Big Science Journal and our Source Code on Github.

Publication

https://link.springer.com/article/10.1007/s41781-024-00117-0

Source Code

https://github.com/realtime-tracking/graphbuilding

