



# Real-time Clustering with GNNs for the Electromagnetic Calorimeter Trigger at Belle II

Workshop on Fast Realtime Systems and Realtime Machine Learning 2024 Isabel Haide, Marc Neu, Torben Ferber | Wednesday 10<sup>th</sup> April, 2024



#### www.kit.edu

#### **The Belle II Detector**





## Current Electromagnetic Calorimeter (ECL) Trigger





- 1.) All 8736 crystals are read out
- 2.) The energy of 16 crystals is analogously summed into one trigger cell (TC)
- 3.) A 100 MeV energy cut is applied to each TC to reduce input size

- 4.) Clusters are found through isolating cluster logic
- 5.) Event Timing for all triggers is defined through highest energetic cluster
- 6.) Trigger lines for Bhabha rejection and low multiplicity events are calculated

- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals





- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals





- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals
- FPGA logic selects TCs with an energy deposit over 100 MeV for clustering to decrease noise





**Triggercells with Energy Depositions** 

- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals
- FPGA logic selects TCs with an energy deposit over 100 MeV for clustering to decrease noise
- Current clustering logic finds clusters through isolated cluster logic





- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals
- FPGA logic selects TCs with an energy deposit over 100 MeV for clustering to decrease noise
- Current clustering logic finds clusters through isolated cluster logic





**Triggercells with Energy Depositions** 

Isolated Cluster Logic

|   | 1 |  |
|---|---|--|
| 2 | 0 |  |
| 3 | 4 |  |

<sup>0 &</sup>amp; !(1 or 2) & !(3 and 4)

- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals
- FPGA logic selects TCs with an energy deposit over 100 MeV for clustering to decrease noise
- Current clustering logic finds clusters through isolated cluster logic



**Triggercells with Energy Depositions** 



#### **Cluster Energy and Position**



Cluster Energy = Sum of All Energies in Window Cluster Position = Position of Highest Energetic TC

- Typical photon cluster is contained within a 5x5 grid of crystals
- Current ECL Trigger reads out analog energy sum of triggercells (TCs) consisting of up to 16 crystals
- FPGA logic selects TCs with an energy deposit over 100 MeV for clustering to decrease noise
- Current clustering logic finds clusters through isolated cluster logic
- Current algorithm returns up to 6 isolated clusters in the order Barrel -> Forward Endcap -> Backward Endcap
- Overlapping or adjacent clusters can by design not be distinguished
- High beam background energy depositions look like clusters
  - $\rightarrow$  high trigger rate





#### **Cluster Energy and Position**



Cluster Energy = Sum of All Energies in Window Cluster Position = Position of Highest Energetic TC

#### Institute of Experimental Particle Physics (ETP)



#### Beam Background Level in 2021





#### Beam Background Level in 2022





#### **Estimated Future Beam Background Level**





Isabel Haide - isabel.haide@kit.edu: GNN-based Clustering

### Beam Background in the ECL





- hie: Total energy sum in inner ECL > 1 GeV
- Simulation containing only beam background taken from data already increases trigger rate of single line to > 1 kHz
- Maximum possible total trigger rate = 30 kHz
- $\Rightarrow$  Trigger algorithm has to be adapted to rising background conditions

### **Object Condensation for the ECL Trigger**





| Hyperparameter        | Value |
|-----------------------|-------|
| Nr. of Neighbors      | 9     |
| Nr. of GravNet Blocks | 2-4   |
| Nr. of Nodes for LL 1 | 16/32 |
| Nr. of Nodes for LL 2 | 16/32 |
| Momentum              | 0.6   |
| Cluster Coordinates   | 3     |

 $\Rightarrow$  Between 12 000 and 60 000 parameters

- Object Condensation (OC): One-shot algorithm for both detection and reconstruction of clusters (arXiv:2002.03605)
- Irregular geometry and varying input sizes in the ECL → Graph Neural Networks (GNN)
- OC algorithm is adaptable to different beam backgrounds and can be (for future upgrades) adapted to different inputs

- Inputs: All TCs with energy deposition > threshold with position of TC, reconstructed energy, reconstructed timing
- Outputs: Existence of cluster, cluster position, cluster energy
- All training and evaluation is done on CPU at the moment

#### **Example Event - ECL Triggercells**





## Example Event - Triggercells with 0.1 GeV Cut





#### **Example Event - Triggercells, Zoomed**

(Lad) (rad) (





#### **Example Event - Triggercells, Trigger Clusters**



× Signal Particle Position



#### **Example Event - Triggercells, Predictions**



x Signal Particle Position



### **OC for the ECL Trigger - Implementation**



- Testing Hardware: XCUV160
- GravNet module employs KNN algorithm  $\rightarrow$  implemented on FPGA
- We plan to implement this in parallel to current trigger algorithm for testing in deployment

Karlsruhe Institute of Technology

### OC for the ECL Trigger - Network Design

- Trigger Input Signal: 1 bit hit + 7 bit timing + 12 bit energy
- For kNN algorithm, limit of 64 input TCs and 16 nearest neighbors
  - For BB

    events, 99% of events have less than 28 TCs above 100 MeV for current background levels (< 103 TCs for future background levels)
- Testing hardware limits network size to 2 GravNet blocks
  - Offline testing with small networks sizes still outperforms trigger
- First quantized implementation of GravNet layer on FPGA successfully done



Input Matrix



### OC for the ECL Trigger - Network Design



- Trigger Input Signal: 1 bit hit + 7 bit timing + 12 bit energy
- For kNN algorithm, limit of 64 input TCs and 16 nearest neighbors
  - For BB

    events, 99% of events have less than 28 TCs above 100 MeV for current background levels (< 103 TCs for future background levels)
- Testing hardware limits network size to 2 GravNet blocks
  - Offline testing with small networks sizes still outperforms trigger
- First quantized implementation of GravNet layer on FPGA successfully done



Figure: Shen Shao

## OC for the ECL Trigger - Network Design



- Trigger Input Signal: 1 bit hit + 7 bit timing + 12 bit energy
- For kNN algorithm, limit of 64 input TCs and 16 nearest neighbors
  - For BB events, 99% of events have less than 28 TCs above 100 MeV for current background levels (< 103 TCs for future background levels)
- Testing hardware limits network size to 2 GravNet blocks
  - Offline testing with small networks sizes still outperforms trigger
- First quantized implementation of GravNet layer on FPGA successfully done



|    |    | X078    | 2077  | 2076         | TOLE   | X074         | x073 | 2072 | 2071  | X070  |
|----|----|---------|-------|--------------|--------|--------------|------|------|-------|-------|
|    |    | X173    | X177  | <b>X1</b> 76 | X175   | X174         | X173 | X172 | X171  | K170  |
| 1  |    | X 77 S  | X277  | X 27 6       | X 27 5 | X 27 4       | X273 | X2T2 | X 271 | K2170 |
|    |    | STEX    | X3Y7  | <b>X</b> 3¥6 | X375   | X3Y4         | XST3 | XSY2 | X371  | X3Y0  |
|    | 19 | X478    | X4177 | <b>X4</b> 76 | X475   | X474         | X473 | X473 | X471  | £470  |
| A. |    | x578 70 | X577  | X576-        | X576   | <b>x</b> 574 | x573 | X572 | X5T1- | (514) |

Figure: Marc Neu

#### **ECL Bhabha Veto**

 $e^+e^- \rightarrow e^+e^-$  Event:





- One main task of the ECL Trigger is to veto Bhabha-like events
- Bhabha vetoes on trigger level do not use track information but only clusters

Cut=0.1) (GeV)

Friggercell Energy (rec,

- Two clusters above 3 GeV and one cluster above 4.5 GeV (in center-of-mass system)
- Angle requirement to have back-to-back clusters in center-of-mass system
- Many physics trigger lines depend on no Bhabha veto



#### Low Mass ALP Event (0.2 GeV):

ECL Bhabha Veto - ALP Decays



# Karlsruhe Institute of Technoloc

- Decays with signatures mimicking Bhabha events in the calorimeter have very low efficiency
- Example: ALP-Strahlung  $e^+e^- \rightarrow a (\rightarrow \gamma \gamma) \gamma$ , highly overlapping clusters for light ALPs (arXiv:1709.00009)

Light ALP

Cut=0.1) (GeV)

Friggercell Energy (rec,

100

10-1



#### **ECL Bhabha Veto - ALP Decays**



#### Higher Mass ALP Event (1.0 GeV):



- Decays with signatures mimicking Bhabha events in the calorimeter have very low efficiency
- Example: ALP-Strahlung  $e^+e^- \rightarrow a (\rightarrow \gamma \gamma) \gamma$ , highly overlapping clusters for light ALPs (arXiv:1709.00009)



#### **ECL Bhabha Veto - Improvement**



- Visible improvement in estimated trigger efficiency for e.g. ALP analyses due to improved separation
- Currently fully run on CPU



# Summary



- High beam background challenge can be tackled with GNN trigger algorithm
- Small GNN network (16k parameters) and input sizes ( < 30 TCs) for application on FPGAs
  - Implementation of kNN and GravNet algorithm on FPGAs already successful
- Improvement on low multiplicity efficiency and Bhabha rejection (on CPU)
- End of year goal: Full implementation on FPGA and parasitic running at Belle II



Event recorded in Feb. 24 - Crystals

#### Summary



- High beam background challenge can be tackled with GNN trigger algorithm
- Small GNN network (16k parameters) and input sizes ( < 30 TCs) for application on FPGAs
  - Implementation of kNN and GravNet algorithm on FPGAs already successful
- Improvement on low multiplicity efficiency and Bhabha rejection (on CPU)
- End of year goal: Full implementation on FPGA and parasitic running at Belle II



#### Event recorded in Feb. 24 - TCs

#### Summary



- High beam background challenge can be tackled with GNN trigger algorithm
- Small GNN network (16k parameters) and input sizes ( < 30 TCs) for application on FPGAs
  - Implementation of kNN and GravNet algorithm on FPGAs already successful
- Improvement on low multiplicity efficiency and Bhabha rejection (on CPU)
- End of year goal: Full implementation on FPGA and parasitic running at Belle II



Event recorded in Feb. 24 - Predicted Clusters (evaluated on CPU)