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What we want to study
How collisions help us

What actually happens

Production of a Higgs boson (H) through Vector Boson Fusion (W/Z) Partons and hadronization

https://sherpa.hepforge.org/trac/wiki/MonteCarloGenerators
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The CMS experiment:  
LHC camera with 100 Mpixel
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Different particle types can be measured with different detectors
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MACHINE LEARNING IN CMS / HEP EXPERIMENTS
Ultra fast ML for triggering
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TriggerL1 Trigger

1 kHz 
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• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever
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ML

ML

ML applications you have seen at this  
school these last days

We know it works here: jet identification, anomaly detection, objects or 
event reconstruction and identification, …

Usual ML focus  
in HEP

Image from Sioni Summers, Jennifer Ngadiuba et al.
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ML IN HEP EXPERIMENTS

This talk! 
๏ CMS Level-1 Trigger  
๏ ML for Reconstruction 
๏ ML for Event selection 
๏ ML@Other hardware

Ultra fast ML for triggering
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ML

ML

ML applications you have seen at this  
school these last days

We know it works here: jet identification, anomaly detection, objects or 
event reconstruction and identification, …

This talk! 
๏ CMS Level-1 Trigger  
๏ ML for Reconstruction 
๏ ML for Event selection 
๏ Other Fast ML: ASIC, Scouting



EVENT SELECTION:  
TRIGGER
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Data taking at CMSB. Radburn-Smith

Premise
• The LHC collides bunches of protons at 

40 MHz*

• We cannot readout all of the collisions 

(Zero-supressed data would be ~30TB/s)

• Only some of these collisions will be of 

interest

• We need a way to filter out the interesting 

collisions to analyse

• 2 level trigger system based on hardware 

and software respectively

2
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LHC: 40 Million proton collisions per second

1 Higgs boson is produced / second

1000 W/Z bosons produced / second

New physics (= Anomalies) hiding here?

* LHC values from 2010 -> now higher luminosity
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๏ Cannot record 40 MHz of collision data! 

๏ CMS exploits a two-level trigger (filter):  

1. Level-1 Trigger (L1T)  

• Implemented in hardware on FPGAs 

• Receives coarse detector data 

• Decision within O(μs) 

2. High-Level Trigger (HLT) 

• Uses CPU/GPUs in a computing farm  
• Full resolution of detector data 

• Decision within < 1 second

THE CMS TRIGGER SYSTEM

9

LHC Collisions
40 MHz

L1 Trigger 2 TB/s
110 kHz

HLT
6 kHz

Disk

L1 vs HLT 
 resolution
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Processing data  
and reconstructing 
physics objects

Final decision

Raw detector  
data ”in” Current FPGA  

Workhorse:  
Xilinx Virtex7 
on custom host boards  
(MP7/FC7) 
in uTCA crates



WHAT ARE FPGAS?
FPGAs!

xkcd “Python” 

https://xkcd.com/353/


ANOMALY DETECTION  
@ CMS L1 TRIGGER
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๏ Searching for new physics at the LHC – multiple fronts: 

‣ Direct: e.g. looking for exotic particles (peak or excess searches) 

‣ Indirect: precision measurements of particle parameters (e.g. H couplings) 

‣ Anomaly detection using recorded data (examples at this conference) 

๏ All rely on existing selection (trigger) algorithms  
–> Model dependent or high energy thresholds 

๏ What if anomalous collisions are NOT RECORDED?  
–> Anomaly detection at trigger level!

13
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๏ Autoencoders train unsupervised on data 
‣ Learn to compress and to reconstruct the data 

‣ Difference  = "degree of abnormality”̂x − x

Autoencoders: Learns from data 
• Trains unsupervised 
• Learns to compress, then reconstruct data 
• Often used for financial fraud detection  

• Low rate of anomalous events versus high rate “background” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ML for  anomaly  detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

 
1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

Real data x Reconstructed data x̂

ℜk

ANOMALY DETECTION WITH AUTO-ENCODERS
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Autoencoders: Learns from data 
• Trains unsupervised 
• Learns to compress, then reconstruct data 
• Often used for financial fraud detection  

• Low rate of anomalous events versus high rate “background” 

• Difference -  defines "degree of abnormality” 
 
 
 
 
 
 

x x̂

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

 
1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Real data x Reconstructed data x̂

ℜk

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication
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µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication
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µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

ML for  anomaly  detec t ion

๏ Autoencoders train unsupervised on data 
‣ Learn to compress and to reconstruct the data 

‣ Difference  = "degree of abnormality” 

➤ If trained on “background” –> “signal” is anomalous!

̂x − x

ANOMALY DETECTION WITH AUTO-ENCODERS

15



Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |ANOMALY DETECTION @ CMS LEVEL-1 TRIGGER
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Raw detector  
data ”in”

Raw detector images: 
CICADA

Reconstructed  objects: 
AXOL1TL



HIGH-LEVEL INPUTS: 
AXOL1TL



Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |AXOL1TL: ANOMALY DETECTION WITH OBJECT TOPOLOGY

๏ AXOL1TL (Anomaly eXtraction Online Level-1 Trigger aLgorithm) is a variational auto-encoder: 
‣ Encodes input as a distribution over the latent space 
‣ Add regularisation term in loss: KL divergence, how different is distribution from Gaussian 

๏ Inputs: L1 trigger objects 4-vectors (pT, η, ɸ) 
‣ Most energetic 4 electron/photons, 4 muons, 10 jets and missing transverse energy (MET)

18

AXOL1TL Design

6

AXOL1TL is a variational autoencoder:
• Encodes input as a distribution over the latent space
• Additional loss term regularizes latent space to be Gaussian

Uses L1 trigger objects as inputs: (pT, η, ɸ) of MET, up to 4 electron/photons, 4 muons, and 10 jets

T. Aarrestad

N/A N/A

Train on data collected by CMS in 2023 at √s=13.6 TeV, 10.5 million events 50% for training, 50% testing 

5 5

AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

CMS-DP-2023-079

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2876546


Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |AXOL1TL: ARCHITECTURE OPTIMISATION

๏ Full NN architecture does not fit the L1/FPGA constraints 

‣ –> only use encoder half of the network 
• Compute degree of abnormality from latent space directly 
• No need to use inputs for anomaly score computation 

• Half network size and latency!

19

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |AXOL1TL: COMPRESSION

๏ Quantization-aware training with QKeras and FPGA adaptation with HLS4ML 
‣ Narrow, shallow model, aggressively quantised 

๏ Output is one vector [13,1], corresponding to µ part of [µ,σ] KL loss  
(dropping σ as it is small -> reduces processing time) 

๏ Anomaly score: sum squared of the µ vector

20

Model trained quantization-aware with QKeras and translated into hardware description language via                        + Vivado 
• Narrow, shallow model, aggressively quantised 
• Output is one vector [13,1], corresponding to µ part of [µ,σ] KL loss  (dropping σ as it is small and becomes negligible) 
• Sum squared of this vector is anomaly score,  

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

∑ μ2

Model  compress ion

https://github.com/google/qkeras
https://fastmachinelearning.org/hls4ml/
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Workshop on Realtime ML, 10.4.24 |

AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

AXOL1TL: FPGA IMPLEMENTATION

๏ Implemented on Xilinx Virtex-7 XCVU9P FPGA 

๏ Met requirements on latency and resources 

‣ 50 ns latency & ~1% resources

21

AXOL1TL Implementation

9Jannicke Pearkes

Implemented on Xilinx Virtex-7 XCVU9P FPGA: 
50ns latency and resource requirements met 

Latency LUTs FFs DSPs BRAMs

2 ticks
50 ns

2.1% ~0 0 0

AXOL1TL

MP7 payload

MP7 infrastructure

Resource utilization of Virtex-7 FPGA chip on Imperial College MP7 μGT board

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |AXOL1TL: COMMISSIONING

๏ AXOL1TL is trained with unbiased data collected  
by CMS during 2023 with √s=13.6 TeV 
‣ 10.5 million events (50/50% for training/testing) 
‣ Selected 5 test scores in firmware 

๏ Commissioned in Global Trigger Test Crate during 
proton collisions in 2023 –> stable as standard triggers

22

Test Crate Implementation

• Prometheus monitoring tool answers 
real-time queries for trigger metrics while 
data-taking

• Used to monitor AXOL1TL rates during 
2023 physics data-taking

• Test Crate model is trained on 2018 data and 
4 thresholds are used to test rate boundaries
• Used for firmware testing, not realistic 

proposal for trigger paths

• Consistent trigger performance shown for 
partial fill cycle
• Single muon trigger (pT > 22 GeV) shown for 

reference

• Dips in rate due to LHC ramp-up and 
luminosity-levelling scheme

Monday, October 2, 2023 TWEPP 2023 15

Global Trigger Test Crate sitting 
underground at CERN Point 5, 

next to CMS Detector

Stable performance in test operation

Model Performance
• AXOL1TL is trained with unbiased data collected by the CMS 

Experiment during 2023 with √s=13.6 TeV
• 10.5 million events used – 50% for training, 50% for setting thresholds

• Dotted lines represent the score thresholds implemented in the 
Global Trigger Test Crate

• Significant performance improvement on various SM and BSM 
signals by adding AXOL1TL to the 2023 trigger menu

• Signal samples are Monte-Carlo generated

• Table shows performance improvement for a Higgs decaying to 2 (pseudo-) 
scalars to bottom quarks

Monday, October 2, 2023 TWEPP 2023 10

Anomaly score distribution for 
unbiased (random) LHC collision data 

CMS-DP-2023-079

https://cds.cern.ch/record/2876546
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Workshop on Realtime ML, 10.4.24 |AXOL1TL: PIPELINE

23

Axol1tl Pipeline

18Jannicke Pearkes



Artur Lobanov |  
Machine Learning @ CMS L1 Trigger | 

Workshop on Realtime ML, 10.4.24 |AXOL1TL: FIRMWARE VALIDATION WITH TEST BENCH

๏ Trigger bits for the L1 menu including 4 anomaly detection thresholds:  
scores >1250, >250, >25, and >5 from top to bottom 

๏ Test vector column: generated from inference results of a standalone C++ emulator  

๏ HW count: comes from standard global trigger firmware simulation workflow using 
ModelSim. Perfect bit agreement is observed

24

Firmware Validation

Test Crate firmware validation. The table 
shows trigger bits for the L1 menu 
including 4 anomaly detection thresholds: 
scores >1250, >250, >25, and >5 from top 
to bottom. Test vector column is generated 
from inference results of standalone 
emulator and HW count comes from 
standard global trigger firmware simulation 
workflow using ModelSim. Perfect bit 
agreement is observed.

9

Idx L1 Menu Algorithm Name Test Vector 
Count

HW Count Agreement

94 L1_ADT_20000 0 0 ✓
95 L1_ADT_4000 29 29 ✓
103 L1_ADT_400 2618 2618 ✓
108 L1_ADT_80 3331 3331 ✓

Test vectors generated from Run 3 data



Artur Lobanov |  
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Workshop on Realtime ML, 10.4.24 |AXOL1TL: FW VALIDATION

25

Test Crate Validation

11

Anomaly Detection hardware vs. emulation trigger mismatches. Events from promptly reconstructed 2023 
Ephemeral ZeroBias data where hardware bits are recorded from configured µGT test crate. In table (left), 
Test Crate Count shows events triggered in hardware and read out into data and Standalone Emulator 
Count is evaluated via offline inference with L1 objects. Anomaly score distribution of all events  (right): 
red segments represent mismatches between hardware and emulation. Clustering near decision 
boundaries implies issue is due to precision/rounding problem. Minimal mismatches in hardware vs. 
emulation (≤ 1%) observed.

L1 Menu Algorithm 
Name

Test Crate 
Count

Standalone Emulator 
Count Mismatches

L1_ADT_20000 1 1 0

L1_ADT_4000 742 741 19

L1_ADT_400 21236 21229 253
L1_ADT_80 25468 25481 93
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๏ Example of an anomalous 
event during 2023 pp 
collisions (from random 
trigger dataset) 

‣ Highest anomaly score 
event not triggered by L1 

๏ L1 objects: 
‣ 11 jets with pT > 20 Gev 

๏ Offline objects: 
‣ 7 jets with pT > 15 GeV 

from the same vertex 
‣ 75 identified vertices

26

Event Display

12

Event display of the highest anomaly score event 
that is not selected by the normal L1T menu, from 
Ephemeral Zero Bias 2023 Run 367883. 

This event features the maximal number of L1 
jets (12), out of which 11 have ET > 20 GeV. It 
also features a 3 GeV L1 muon. The offline 
reconstruction identifies 7 jets (reconstructed with 
the PUPPI algorithm) with pT > 15 GeV, and 1 
muon. 
 
The event is also characterized by a very unlikely 
large number of reconstructed vertices (75), given 
the pile up profile of the data taken in Run 2 and 
Run 3. 
 
 
        

CMS-DP-2023-079

https://cds.cern.ch/record/2876546
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๏ Use simulated hypothetical exotic signal as a anomaly candidate 

๏ Significant performance improvement on various SM and beyond the SM signals 
by adding AXOL1TL to the 2023 trigger menu 
 

 

๏ Example performance improvement for H->aa[15 GeV]->4b signal: 

 

๏ Starting data-taking with ~O(100) Hz L1 rate in 2024 pp collisions soon!

a

a

Significant performance improvement on various SM and BSM signals 
by adding AXOL1TL to the 2023 trigger menu.

Example performance improvement for H->aa[15 GeV]->4b signal:

Physics Performance

14

Rate 1 kHz 5 kHz 10 kHz

Signal Efficiency Gain 46% 100% 133%

Large increase in signal efficiency for a small increase in rate of 1-10 kHz relative 
to total L1 rate of ~110 kHz.

CMS-DP-2023-079

27

AXOL1TL: PHYSICS PERFORMANCE

CMS-DP-2023-079

https://cds.cern.ch/record/2876546


RAW FEATURES: 
CICADA
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Workshop on Realtime ML, 10.4.24 |CICADA: ANOMALY TRIGGER ON RAW INPUTS
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L1 Calorimeter Anomaly Detection 
Triggering Tests Using the CICADA 
Algorithm For Run 3 Of The CERN 

LHC at CMS
Isabel Ojalvo, Andrew Loeliger, Adrian Pol (Princeton University)

On behalf of the CMS Collaboration

CMS Experiment Anomaly Detection with 
Machine Learning

Preliminary Emulated 
PerformanceThe Large Hadron Collider (LHC) at CERN provides proton 

beam collisions at a 40 MHz rate to provide the data needed to 
make statistically significant physics discoveries. By necessity, 
not all events can be stored, so a primary challenge of 
experiments at the LHC is to reduce the events kept for later 
analysis down to an acceptable number.

Machine Learning on Highly 
Constrained Systems

To achieve this, the CMS Experiment uses a series of systems 
designed to render a decision to keep an event or not, called the 
“trigger”. The Trigger is subdivided into two parts:
• The Level 1 Trigger, which is designed to filter out the most 

interesting collisions and reduce the data taking rate down 
from 40 MHz to ~100 kHz. The L1 trigger is implemented on 
Field Programmable Gate Arrays (FPGAs) which can 
implement the low latencies required for the L1 trigger

• The High Level Trigger, is a traditional distributed CPU 
system designed to further filter interesting events and reduce 
the ~100 kHz rate from the L1 trigger down to a few kHz range. 
More information is available at HLT, and more complicated 
reconstruction can be done to try to narrow in on physics 
signatures.

Future Prospects

ECAL TPs
(energy)

HCAL TPs
(energy)

HF TPs
(energy)

Calo Layer-1
(pre-processor)

Calo Layer-2
(main-processor)

De-multiplexing

𝜇GT
(global trigger)

L1T CaloSummary
3 CTP7 Cards

CICADA

CMS is pioneering a way to use 
machine learning algorithm at the 
deepest, earliest layers of the 
trigger to introduce a machine 
learning model designed to reject 
common, uninteresting events 
with minimal human 
preconception. This algorithm, 
intended for Run 3 usage, is 
called “CICADA”

CICADA stands for: Calorimeter Image Convolutional 
Anomaly Detection Algorithm
• CICADA will run a neural network evaluation designed to 

pick out new topologies, in real time, alongside traditional 
trigger algorithms

• CICADA is an unsupervised model, and is trained on 
unbiased CMS data

• CICADA uses as input almost raw detector data, difficult 
for humans to make patterns, but ideal for machine learning 
systems

The CICADA algorithm is trained on a random selection of 
2023 LHC data which has had no filtering imposed on it to bias 
it. It uses 300,000 events from each of 3 different time periods.

CICADA’s output is evaluated in a software emulator that uses 
a compiled version of the FPGA firmware code to provide 1-to-
1 bit accurate performance behavior. When in this manner, 
preliminary evaluation of the CICADA emulator on events 
shows stable performance across various detector time 
periods, a prerequisite for trigger algorithms.

The CICADA emulator can also be used to examine CICADA’s 
potential performance over time in a data-taking run, which is 
how the standard unit of data taking (a lumi section) is 
organized. CICADA can also be compared to the rate 
performance of other algorithms used at the L1 Trigger. In 
general, when compared to standard algorithms used by 
the L1 Trigger, CICADA shows similar emulated 
performance characteristics over time. It is no less stable. 
This behavior is vital for trigger algorithms

When it is implemented and put into service for data-taking, 
CICADA will be able to operate in the same way that hand 
constructed algorithms have been operating for more than a 
decade, but will provide a new way of doing physics at the 
triggering and data-acquisitions level, introducing an 
effectively physics model-free trigger

CICADA has three primary design goals:

   - Develop novel machine learning techniques at the extremely low latency L1 Trigger at CMS. Anomaly detection methods have the ability 
to find and trigger on events that no other traditional trigger algorithm would. These events found only by CICADA are called pure. Emulation of 
CICADA shows that the rate of pure data is manageable and configurable by changing the discriminator score. Overlap with existing triggered 
events shows that the CICADA trigger is able to pick up “known” rare physics signatures.

   - Introduce a physics model-independent, minimally human-biased triggering algorithm. Researchers at the LHC have been searching for 
Beyond the Standard Model signatures since the machine was turned on in 2009. It is now possible that instead of only searching for “known” 
physics signatures and hypotheses, or using very simple model-free techniques, more sophisticated minimally biased data acquisition of rare 
events can finally be performed.

- Third, CICADA’s technical implementation is a prototype for wider L1 Trigger upgrades planned for the L1 Trigger at CMS in the future

Student Network

MSE
Teacher Network

~10x reduction in latency 
and resource usage

Anomaly detection in CICADA is performed via the auto-encoder 
method. To do this, a neural network is trained to take event input, 
and encode it into a space much smaller than the original input 
features (called the “latent space”). The network must then 
reconstruct the original event input from this reduced space

The crux of this method is that when it is trained on unbiased 
collision data, the reduced size of the latent space means that the 
convolutional network must learn to generalize to these events. 
Unbiased collisions are, in general, uninteresting for analysis 
so the network learns, without manual feature engineering, 
to generalize and reject these uninteresting events.

In general, convolutional neural networks are computationally 
intensive, and getting a network to run at the timing required to 
be used on an FPGA at the L1 trigger is difficult, however, 
several methods can be used to reduce the network complexity 
while retaining it’s power:
• Quantization can be used to reduce the overall precision 

of the numbers on the interior of the network. This reduces 
computation

• Knowledge distillation can be used to reduce the 
network’s task. CICADA trains a secondary, smaller model 
designed to skip encoding and decoding steps, and simply 
predict a final answer generated by the larger, more 
complicated model.

CICADA’s specific setup is called Student-Teacher Knowledge 
Distillation.
• The Teacher Model performs a complete encoding and 

decoding of the original input data
• The Student Model uses a smaller convolutional layer with 

only 4 filters, and a couple of dense layers to predict the 
quality of reconstruction/loss (Mean Squared Error) of the 
teacher network. This predicted reconstruction quality is called 
the anomaly score.

CICADA

8

CICADA project: Calorimeter Image Convolutional Anomaly Detection Algorithm
Ø https://cicada.web.cern.ch/

Autoencoder-based anomaly detection
• Input is 2D tensor from the calorimeter region energy information
• Encoder and decoder are convolutional neural networks
• Unsupervised learning: train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input

Autoencoder model

Anomaly Detection - CICADA, US LUA, Dec 2023

Reconstruction Qualities

4

Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far 
left, reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right 
(original: center right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero 
Bias beam event as evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows 
how the CICADA anomaly detection mechanism works to find anomalies.

๏ CICADA (CMS DP-2023/086): 
Calorimeter Image Convolutional  
Anomaly Detection Algorithm 

๏ Using raw inputs of calorimeter: 
‣ Image of 18 x 14 energy deposits 

‣ Independent of domain knowledge 
(standard trigger algorithms) 

๏ Convolutional auto-encoder trained on 
background dataset: signal -> anomaly!

CMS DP-2023/086

https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
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๏ Full CICADA model is too complex for FPGA resources / L1 Trigger requirements 
–> use Student-Teacher Knowledge Distillation 

‣ Teacher model: complete encoding and decoding of the original input data 

• Anomaly score (reconstruction error): average of the squared error (predicted – input) 
in reconstruction for each of the 252 individual energy deposits (Mean Squared Error) 

‣ Student model: regresses the anomaly score of the teacher model  
• Smaller convolutional layer with only 4 filters + few dense layers  

-> 10x faster & less resources -> fits FPGA/L1T requirements

30

8

CICADA project: Calorimeter Image Convolutional Anomaly Detection Algorithm
Ø https://cicada.web.cern.ch/

Autoencoder-based anomaly detection
• Input is 2D tensor from the calorimeter region energy information
• Encoder and decoder are convolutional neural networks
• Unsupervised learning: train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input

Autoencoder model

Anomaly Detection - CICADA, US LUA, Dec 2023

CMS DP-2023/086 Teacher Model Student Model

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
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๏ CICADA currently being commissioned in the L1 Trigger test system 

‣ Software-based emulation based on Firmware (HLS4ML) and validated 
‣ Preliminary performance estimates promising + operational stability tested 

๏ This is the first anomaly detection on low-level inputs in a LHC trigger system!

31

CICADA Score Distributions

5

CICADA has an emulator compiled from its firmware which can be used to test the firmware model on genuine 
detector data accurately. All output from the emulator is bit accurate to the output of the firmware

The plot on the left shows the CICADA score on different 2023 data taking periods (for events CICADA was not 
trained on) for zero-bias events. Run B corresponds to data taken between April-May 2023, Run C corresponds 
to data taken between May-June 2023, and Run D corresponds to data taken between June-August 2023. The 
plot on the right calculates a rate from the efficiencies obtained using these scores as a threshold. The score is 
stable between periods, and will only need re-training when there are changes in the detector conditions.

Emulated CICADA Run Performance

7

The accuracy of the emulator can also be 
used to demonstrate CICADA’s performance 
inside of a run. The plot on the left shows 
CICADA rate for a 5 kHz overall rate 
threshold (red), and 3 kHz pure trigger (blue), 
compared against common unprescaled bits 
like SingleMu22 (pink, corresponds to 
triggering on a muon with transverse 
momentum of 22 GeV), SingleJet180 (yellow, 
corresponds to triggering on a jet of 
transverse energy 180 GeV) and SingleTau 
120 (green, corresponds to triggering on a 
tau of transverse momentum 120 GeV). 
CICADA’s performance is very similar to 
these simple benchmark unprescaled bits.

The data shown here was taken in July 2023.

Firmware-emulated  
anomaly score  
for random data 
(background)

CICADA rate stability  
wrt standard L1T algorithms 

CMS DP-2023/086

https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2876546


TOWARDS THE  
HIGH-LUMINOSITY LHC



TRIGGERS IN HEP

xkcd “Data Trap” 

https://xkcd.com/2582/
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๏ High-Luminosity phase of the LHC (HL-LHC) will start in 2029: 

3x higher instantaneous luminosity and pileup wrt current conditions 
‣ CMS will upgrade most of its detectors, including all (trigger) electronics 

๏ L1 Trigger for the HL-LHC: 
‣ Bandwidth: 2 –> 63 TB/s 
‣ Output 100 –> 750 kHz  
‣ Latency: 4 –> 12 us 

๏ Tracking @ L1T + new  
processing systems will enable 
“offline-like” reconstruction

34
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Trigger system design

Provides robust independent triggers for calorimeter, 
muon and tracking systems separately, and a Particle 
Flow trigger, which combines detector information, all 
feeding into a global trigger

Detector inputs

System specification and constituents

Increase bandwidth 100 kHz → 750 kHz

Increase latency 3.8 μs → 12.5 μs (9.5 μs target contingency)

Include high-granularity detector and tracker information

Dedicated scouting system @ 40 MHz → streaming data


Optical link speeds 16/25 Gb/s as appropriate for application


Use of largest FPGA parts where processing bound e.g. Xilinx 
Virtex Ultrascale+ (VU9P/VU13P) and smaller parts where 
processing is less critical e.g. Xilinx Kintex Ultrascale 


Overall over 200 FPGAs


Processing partitioned regionally and in time as appropriate


Hundreds of 
Xilinx VU13P 

FPGAs
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๏ ML-based triggers proposed in the L1T “TDR” for the High-Luminosity LHC 

๏ Classifier approach: binary classifier for known signals trained on simulation (Note) 

๏ Anomaly detection: auto-encoder based on L1 trigger objects (as AXOL1TL) 
‣ Sensitivity at the ~same order as of the classifier approach (e.g. VBF H>inv)

36

NN classifier for VBF H>inv Anomaly trigger

๏ Tests of AXOL1TL and  
CICADA pave the way  
for anomaly triggering 
at the HL-LHC in CMS!

https://cds.cern.ch/record/2714892?ln=en
https://twiki.cern.ch/twiki/bin/view/CMSPublic/L1TP2CNNDPNOTE
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๏ Reconstructing the “primary vertex” of the collision 
‣ The vertex with the highest energy  

(amongst 100s of other vertices!) 

๏ Multi-step approach of learning: feature weighting, 
pattern recognition, track-to-vertex association 

๏ (Q)NN drastically improves baseline at latency < 500ns!
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Neural Network Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS 
Level-1 Trigger System
C. Brown1, A. Bundock3, M. Komm2, V. Loncar2, M. Pierini2, B. Radburn-Smith1, S. Summers2, A. Tapper1 on behalf of the CMS collaboration

1. Imperial College London, 2. CERN, 3. University of Bristol

[1] I. Béjar Alonso et al, (Eds). High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V.10 CERN
Yellow Reports: Monographs, 2020.
[2] The CMS Collaboration, “The Phase-2 Upgrade of the CMS Level-1 Trigger Technical Design Report,” CMS-TDR-019-
002, Jun 2020
[3] Coelho, C.N., Kuusela, A., Li, S. et al. Automatic heterogeneous quantization of deep neural networks for low-latency
inference on the edge for particle detectors. Nat Mach Intell 3, 675–686 (2021)
[4] J. Duarte et al, "Fast Inference of Deep Neural Networks in FPGAs for Particle Physics", JINST 13 P07027, 2018

2-part loss function, zPV, P(from PV).
Differentiable argmax peak finding
Follows structure of baseline
approach; learned histogram weighting,
learned pattern recognition, learned
track-to-vertex association
Robust to track changes:
fake filtering & resolution learning.

L1 regularisation and pruning
QKeras [3], tuned quantisation.
Converted to FW blocks using hls4ml [4]
Implement in existing vertex finding FW.

Latency 
(ns)

Initiation 
Interval (ns)

LUTs % DSPs % BRAMs % FFs %

NN Weight 22 2.7 0.14 1.11 0.00 0.04
QNN Weight 14 2.7 0.05 0.00 0.00 0.02
NN Pattern 58 51 4.27 3.74 5.28 3.22
QNN Pattern 42 35 4.43 0.00 5.28 3.15
NN Assoc. 30 2.7 0.63 5.98 0.00 0.15
QNN Assoc. 25 2.7 0.44 0.83 0.00 0.13

L1 track histogram for 1 tt event, weighted
by pT. True PV and baseline reco vertex
shown

Hi-Lumi LHC [1]
5-7x inst lumi
10x int lumi
200 PU

L1 trigger
FPGA architecture
< 12.5 us latency
L1 track finding

Track finding [2]
pT > 2 GeV
Track Isolation & Matching
Global track algorithms

Primary Vertex (PV)
Hard scatter
Associated objects 

downstream
< 500 ns latency.

highest combined 

threshold depends 

End-to-end Network

1. PV residual, long tails reduced by NN
2. Track-to-vertex ROC, better 
discrimination
3. Track ET

miss, vector sum of PV track pT, 
reduced tails in NN

A. Weight tracks pT
B. 256 bin histogram
C. 3 consecutive bins with highest weight
D. Argmax to find peak
E. Δz threshold for assocation 
depends on track η

Baseline Approach
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https://indico.cern.ch/event/855454/contributions/4596770/
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๏ Need to deal with changing detector conditions: ageing, noise, LHC conditions, etc 
‣ Normally do dedicated training/algo  

optimisation with full dataset  

๏ Continual Learning: train a model with  
a continuous stream of data 
‣ Learns from a sequence of partial  

experiences rather than all the data  
at once 

‣ Update model to changing conditions  
without large MC production 

๏ Method tested on Vertex reconstruction: 
‣ CL outperforms a simple retrained model when detector defects are applied to the training 

data

38

Public note
CHEP23

https://twiki.cern.ch/twiki/bin/view/CMSPublic/L1TCLDPSNote2023
https://cms-mgt-conferences.web.cern.ch/conferences/pres_display.aspx?cid=3147&pid=25984
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๏ Jet flavour ML identification successful offline, now online! 

๏ Different ID problems and architectures being studied for HL-LHC:  
‣ Flavour tagging, pileup (background) rejection 
‣ Investigating Graph/Interaction NNs for this case 

๏ Proof-of-concept for jet identification shown for L1@HL-LHC!

39b quark jet tagging

CMS Note DP2022_021RECENT DEVELOPMENTS HIGHLIGHTS  
18

NN Vertex Finding: 
‣ Combinaison of dense BDTs and CNN to perform 

Vertex Finding and Track-to-Vertex association  
‣ Firmware quantised and pruned to fit within FPGA 
‣ Improved performance wrt to baseline (reduction 

in the tails of the residual by 50%

TIPP 2023 A. ZABI                                                                                                                                                                                                 CMS L1 TRIGGER @ HL-LHC

b-tagging: 
‣ Training NN to ID jets from b-quarks 
‣ Runs on PUPPI particles within each jet and 

discriminate between b-quark jets and those 
from light quarks and gluons 

‣ Better performance 
compared to QuadJet+HT for 
M(HH) < 500 GeV (or 
Jets+Muon triggers) 

https://cds.cern.ch/record/2814728?
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๏ Regressing the muon momentum based on the hits in the muon detectors 

๏ Based on features extracted from previous track finding

40

36 features from several sub tracks
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

BDT  
NN

Trigger Rate vs 
“collision intensity” 
Lower rate with NN!

CMS L1T Phase-2 TDR

[CPAD 2019]

https://agenda.hep.wisc.edu/event/1391/contributions/6915/attachments/1706/1921/2019-12-08_ml_cms_l1_muon_trigger_v3.pdf
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-DPS: Phase-2 NN Calo Taus

- -

Two algorithms for  triggering have been developed and detailed in the Level-1 Phase-2 TDR [1]: one uses calorimeter and tracking information and is referred to as NN Puppi Tau, the other one uses 
only calorimeter information and thus referred to as Calo Tau. The former targets  typical offline-thresholds* of 50 GeV in a Double-  trigger, while the latter aims at improving efficiency at higher 
thresholds. The Calo Tau algorithm is the one for which a meaningful and fair comparison of performance can be established with the TauMinator algorithm.


Above. (Left) Comparison of the matching efficiency of the TauMinator algorithm and the Calo Tau algorithm evaluated in MC simulated gluon fusion HH bb , as a function of the generator . 
The matching efficiency is computed as the fraction of generated  that are geometrically matched to an L1  candidate. (Middle) Comparison of the trigger turn-ons of the TauMinator algorithm 
(circles-solid) and the Calo Tau (triangles-dashed) algorithm for different values of the L1 threshold, evaluated in MC simulated gluon fusion HH bb . The trigger turn-on is defined as the fraction of 
matched L1 objects that pass a specific  threshold. The functional form of the fits consists of a cumulative Crystal Ball function convolved with an arc-tangent in the high  region. (Right) The single-

 rate as a function of the offline* . The TauMinator algorithm ensures the following improvements over the Calo Tau algorithm: a reduction of the rate by 37% (from 31.4 kHz to 19.8 kHz) at a 
threshold of 150 GeV; or conversely, a reduction of the threshold by 14GeV at a fixed rate of 31.4 kHz. In achieving this, a plateau efficiency of 98% is maintained for all candidates of  GeV.


* The offline  is evaluated as the generator  value at which the trigger turn-on crosses the 90% efficiency point.

τh
τh

→ ττ pGen,τ
T

τh τh
→ ττ

pT pT
τh pT

pGen,τ
T > 50

pT pGen,τ
T

TauMinator vs CaloTau
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HADRONIC TAU RECONSTRUCTION

๏ Hadronic Tau reconstruction very challenging in the L1 Trigger environment 

๏ New CNN approach for tau reconstruction with calorimeter-only information  
followed by two NNs for pT regression and ID 
‣ Outperforms baseline algorithm: better efficiency and lower fake rate

41

CMS DP-2023/062

-DPS: Phase-2 NN Calo Taus

- -

Algorithm architecture
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TauMinator event display

8

Right. A display of an HH bb  event as it is 
reconstructed by the TauMinator algorithm: each dim-
grey  square represents a TT in input to the L1 Trigger; 
the coloured TTs represent the  clusters 
reconstructed by the algorithm in the specific event. The 
two generator level  in the event are represented by 
solid black diamond.


The event is divided into two regions: the barrel for 
, and the endcap for .


In the barrel all  clusters that are reconstructed are 
processed for identification and calibration using a series 
of neural networks (NNs) designed for the purpose.


In the endcap, only the clusters satisfying the proximity 
requirement  are processed for 
identification and calibration.


In the event display, the processed candidates passing 
the TauMinator ID are shown in green, while those failing 
it are shown in dim-red. The  clusters that in the 
endcap do not pass the proximity requirement are shown 
in dim-blue.

→ τhτh

CL5×9

τh

|ηseed | < 1.55 |ηseed | > 1.55
CL5×9

ΔR(CL5×9, CL3D) < 0.5

CL5×9

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Phase2NNCaloTauMinator
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๏ Scouting: directly store L1 physics objects for downstream analysis @ 40 MHz 
‣ Triggerless readout <> lower quality objects 

๏ Run-3 demonstrator system reads L1 objects (muons, calo jets, EG, taus) 
with very heterogenous system: 
‣ 3 boards: KCU1500, SB-852, VCU128) 
‣ Output technologies: DMA, TCP/IP 

๏ Studying ML methods for  
realtime calibrations with HLS4ML  
& proprietary SW (Micron Deep  
Learning Accelerator) 

๏ Detailed overview here and here

SNEAK PEAK: ML @ L1 SCOUTING

42

https://indico.cern.ch/event/1283970/timetable/?view=standard#17-fast-ml-inference-in-fpgas
https://indico.cern.ch/event/1255624/contributions/5443838/attachments/2662334/4735291/TWEPP-2023__l1scout__rardino_v1.pdf
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Ultra fast ML for triggering
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ML

ML

ML applications you have seen at this  
school these last days

We know it works here: jet identification, anomaly detection, objects or 
event reconstruction and identification, …

ML@ASIC?
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๏ Data volume needs compression at detector readout: done by ASICs (fast/efficient!) 

๏ CMS will be using an (auto)encoder for compressing the data intelligently  
in the High-Granularity Calorimeter concentrator ASIC (HL-LHC) 

‣ Decoding done on the FPGA side of the Level-1 Trigger (or direct use in NN@FPGA?)

44

CPAD 2021

FPGAs were designed for ASIC prototyping —> used HLS4ML for design!

Transmitting more 
information with 

limited bandwidth!

https://indico.fnal.gov/event/46746/contributions/210450/


SUMMARY
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9

The typical LHC data flow
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ML advancing from OFFLINE (Hz) to ONLINE (MHz) applications
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๏ Various anomaly searches for new physics performed at the LHC 

๏ Opening a new direction:  
anomaly detection in the CMS Level-1 Trigger 

‣ Challenging environment for L1T:  
• Hardware/FPGAs: restricted resources and latency (ns!) 
• Physics: <60> simultaneous collisions,  

only calorimeter and muon detector data 

๏ Two auto-encoder approaches being commissioned in CMS: 

‣ AXOL1TL: using high-level physics objects [CMS-DP-2023-079] 

‣ CICADA: using raw detector data [CMS DP-2023/086] 

๏ Promising prospects for anomaly triggering in CMS! [HL-LHC L1T]

47

Reconstruction Qualities

4

Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far 
left, reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right 
(original: center right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero 
Bias beam event as evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows 
how the CICADA anomaly detection mechanism works to find anomalies.

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
https://cds.cern.ch/record/2714892?ln=en
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Workshop on Realtime ML, 10.4.24 |ML IN CMS L1 TRIGGER FOR HL-LHC
๏ A plethora of L1 components exploring and using ML algorithms for the HL-LHC 

‣ All based on HLS: HLS4ML (NN) and Conifer (BDT) 

๏ Current Run-3 algorithms (AXOL1TL/CICADA) are an important test bed for the future

48Image by Sioni Summers

https://fastmachinelearning.org/hls4ml/
https://ssummers.web.cern.ch/conifer/


ML@FPGA

FPGA

xkcd “Machine Learning” 

https://xkcd.com/1838/
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๏ More results on Fast ML in CMS and beyond were shown at the Fast ML for Science 
Workshop series, e.g. https://indico.cern.ch/event/1283970/: 
‣ Fast ML inference in FPGAs for the Level-1 Scouting system at CMS 
‣ Realtime Anomaly Detection in the CMS Experiment Global Trigger Test Crate 
‣ Harnessing charged particle tracks in the Phase-2 CMS Level-1 Trigger with 

ultrafast Machine Learning 
‣ B-tagging and Tau reconstruction in the Level-1 Trigger with real-time Machine 

Learning 
‣ A Convolutional Neural Network for topological fast selection algorithms in 

FPGAs for the HL-LHC upgrade of the CMS experiment 
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Anomaly Detection Neural Network 

4

The AXOL1TL anomaly detection uses a Variational Autoencoder (VAE). A dense feed-forward neural 
network reads in (pT, η, ϕ) hardware inputs of 19 L1 objects. The encoder network computes a latent 
space vector of Gaussian probability distributions, N(𝜇8, 𝜎8). The decoder network reconstructs the 
original input from the latent space. 
 
 
  Loss = (1 − 𝛽) 𝑥 − �̂�

2
+ 𝛽

1
2 (𝜇2 + 𝜎2 − 1  − log𝜎2)

Reconstruction term Full regularization term

Equation: VAE loss function. The reconstruction term is computed from the difference between the 
input (x) and output (x̂) of the VAE. The second, full regularization term, is the Kullback–Leibler 
divergence (KL-divergence) between the latent space distribution and a standard normal distribution 
with mean μ and standard deviation 𝜎. The parameter β can be tuned to balance the reconstruction 
performance with more efficient latent space encoding. At inference time, the loss is approximated 
by the mean-squared term Σ𝜇i

2 of the KL-divergence for latency considerations. This approximation 
has no impact on performance.
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Shown here is a comparison of the teacher model ability to reconstruct a Zero Bias (ZB) beam event (original: far left, 
reconstructed: center left) versus a signal sample, Soft Unclustered Energy Patterns (SUEP) on the right (original: center 
right, reconstructed: far right). In general, the teacher model is better able to reconstruct the Zero Bias beam event as 
evidenced by a far lower loss (0.81) compared to the SUEP loss (14.21). This example shows how the CICADA anomaly 
detection mechanism works to find anomalies. From [CMS DP-2023/086]

https://cds.cern.ch/record/2879816?ln=en
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๏ hls4ml: package for translating NN to FPGA firmware

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/

