
ErUM-WAVE
Anticipation of 3-dimensional wave fields

Alexander Bauer, Michael Bussmann, Anjali Dhabu, Waleed Esmail, Dirk Gajewski,

Oliver Gerberding, Celine Hadziioannou, Conny Hammer, Markus Hoffmann,

Katharina Isleif, Alexander Kappes, Julian Rautenberg, Stuart Russell, Holger Schlarb,

Morvarid Saki, Achim Stahl, Jochen Steinmann, Christine Thomas

ErUM-WAVE

Outline

 What is ErUM-WAVE ?

 Overview

 Our Test-Setup in Aachen

 Active Noise Mitigation for a Michelson Interferometer

ErUM-WAVE

 Focus
 seismic waves
 anticipate subsurface motion at different scales

 Goal

 active compensation of vibrations
 applicable to real situations, local properties of medium

have to be taken into account

 Application

 PETRA-III/IV, XFEL, gravitational wave detectors
 radio wave reconstruction in AUGER

ErUM-WAVE

Aim - Reconstruct wave field from measured data of
network of point sensors, predict further propagation

ErUM-WAVE

How to

WP1

Prepare
comprehensive

data set

WP2

ML models

WP3

Verification

WP4

Implement for
Real-time

 application

ErUM-WAVE

 Create model of subsurface structure from measured seismic data

 large/medium/small scales

 simplified structural model

→ reflections and anisotropy

 Field measurements in region of ET

 Simulate seismic wave field by forward modelling

 Classical seismic approach

 Surrogate models (grid-free, high-quality

interpolation of high-dimensional parameter spaces)

 Provide comprehensive training data set for WP2

ErUM-WAVE

WP1 - Simulate subsurface structure and propagating
seismic wave field

(mondaic.com)

ErUM-WAVE

 Test different neural network architecture for 3D wave propagation

 Surrogate models: enable grid-free, high-quality interpolation of
high-dimensional parameter spaces

➝ generate artificial datasets to train other architectures (WP1)

 CNNs: first tests on recorded seismic traces show promising results,

(130 earthquakes recorded at 3C-stations in northern Germany)

 Transformer models: self-attention mechanism, long time-series

 ...

 An essential goal is to develop architectures that can be implemented
in FPGAs for real-time predictions (WP4)

WP2 – Method development, networks and AI training

ErUM-WAVE

 DESY
 WAVE network: focus on small scale, anthropogenic and technical

noise
 Application to PETRA-III and EuXFEL: vibrations of base plate,

tunnel segments, ...

 ET
 Focus on large scale: local, regional, global earthquakes

(surface waves, P-/S-waves)
 Simulated data of GRSN to predict at target station close

to ET

 AUGER
 Measured data: sufficient number of events/stations
 Simulated data: higher spatial resolution

WP3 - Verification

ErUM-WAVE

ErUM-WAVE

 Quantisation

 No floats: in-/outputs, weights need to be quantisized

 Post Training Quantisation: Training using floats,
quantisation after full training

 Quantisation Aware Training: Training using fixed point
numbers

 Pruning

 Remove small weights

 Reduce parameters/mathematical operations

 done after main training (re-training)

 Converting the model to HLS4ML

WP4 – Getting an ANN inside a FPGA (XILINX)

ErUM-WAVE

control interface

ANN input
ANN output

ErUM-WAVE

 Data-driven method for reconstruction of the full 3-dimensional seismic wavefield.

 Real-time prediction at different scales: regional and local ground motion, building, measuring
plattform, sensor.

 Provide input for feedback-systems for noise suppression due to seismic disturbances or seismic
noise cancellation in post-processing.

 Applications

 “Noise-free-labs”.

 Reconstructed seismic wavefields for exploration of subsurface to characterize geo risks.

 Seismic risk assessment.

Summary

ErUM-WAVE

ErUM-WAVE

Active Noise Mitigation

our sandbox for real time ANN implementations

Quite an „easy“ task –

once the toolchain is established, more
complex networks can be tested

Together with the AC ET group: Markus Bachlechner, Tim Kuhlbusch

ErUM-WAVE

Lab Setup Overview

Goal: Online noise mitigation of demonstrator interferometer based on real data

ErUM-WAVE

Actuator

Accelerometer

Lab Setup Overview

Interferometer

Screen with Photodiode

ErUM-WAVE

Characterization and Frequency Response

Accelerometer Photodiode

⇒

Determination of the Transfer function:

• Sinusoidal excitation with fixed frequency

• Determine measured amplitude at given frequency

• Scan through frequency band

Frequency [Hz] Frequency [Hz]

Time [s] Time [s]

Noise Mitigation Neural Network

ErUM-WAVE

Porting to FPGA:

• Limited storage and number of operations per clock
cycle

• Reduce size of model ⇒ pruning

• (No floats ⇒ quantization of parameters)

• Performance of pruned network depends on initial
state

• Find “optimal” configuration ⇒ Hyperparameter
optimization

• Reduce to 2000 non-zero parameters

Mitigation Principle and Optimization

Input:

• Measurement accelerometers 𝑎𝑘
Pos.1/2

(𝑡)
with 𝑘 ∈ {𝑥, 𝑦, 𝑧}

• Window of duration 𝑇 (∼ 100ms) from 𝑡𝑖 to 𝑡𝑗

• White noise excited at 10 − 30Hz

Output:

• Prediction for photodiode signal 𝑠(𝑡) at time 𝑡𝑗+1

ErUM-WAVE

Performance Evaluation - BEFORE Pruning

ErUM-WAVE

Performance Evaluation - AFTER Pruning

ErUM-WAVE

Summary Python Toolchain

Summary:

• Build setup to develop model independent online (not yet) noise

mitigation based on real measurements

• High cancelation efficiency of 99.14%

• Even though 99.1% of 215k parameters are removed

Next: FPGA implementation

ErUM-WAVE

Unlimited parameters – very good performance
 BUT: if the network should run on the FPGA → there are some limitation

1. No floats

→ use fixed point instead

2. (very) limited storage for weights

→ use low bit width

3. (very) limited amount of multiplications (240 DSP slices)

→ reduce complexity or use DSP more often

4. Not all types of layers are supported (yet?)

→ use alternative structures and layers

5. Special treatment of input and output format (in/output data scaled to -1 to +1)

raw bits of a sensor match the fixedpoint representation of the training data

The dream of a physicist …

ErUM-WAVE

Quantisation aware training

Use the quantisation during training

ErUM-WAVE

Quantisation aware training

New „reduced“ network

still too large for the FPGA

P
o

o
lin

g
 i
s
 n

o
t
p

o
s
s
ib

le

ErUM-WAVE

 Still > 27k multiplications

 CONV1D are implemented
using „stream“ implementation
with less DSP per layer

Number of operations

Number of operations in model:

 q_conv1d : 1500 (smult_12_8)

 q_conv1d_1 : 7500 (smult_12_12)

 q_conv1d_2 : 7500 (smult_12_12)

 q_conv1d_3 : 7500 (smult_12_12)

 q_dense : 3000 (smult_12_12)

 q_dense_1 : 6 (smult_12_12)

Number of operation types in model:

 smult_12_12 : 25506

 smult_12_8 : 1500

Weight profiling:

 q_conv1d_weights : 15 (12-bit unit)

 q_conv1d_bias : 5 (12-bit unit)

 q_conv1d_1_weights : 75 (12-bit unit)

 q_conv1d_1_bias : 0 (12-bit unit)

 q_conv1d_2_weights : 75 (12-bit unit)

 q_conv1d_2_bias : 5 (12-bit unit)

 q_conv1d_3_weights : 75 (12-bit unit)

 q_conv1d_3_bias : 0 (12-bit unit)

 q_dense_weights : 3000 (12-bit unit)

 q_dense_bias : 6 (12-bit unit)

 q_dense_1_weights : 6 (12-bit unit)

 q_dense_1_bias : 1 (12-bit unit)

ErUM-WAVE

 Train the trained network and set weights to zero

 If weights are zero, the multiplication is not
implemented

Pruning

Weight sparsity:

 q_conv1d : 0.6000

 q_conv1d_1 : 0.7867

 q_conv1d_2 : 0.7375

 q_conv1d_3 : 0.7867

 q_dense : 0.8776

 q_dense_1 : 0.2857

 --

 Total Sparsity : 0.8670

Should now fit into the FPGA

Pruning schedule:
 q_dense: 90%
 q_dense_1: 30%
 others: 80%

ErUM-WAVE

Performance after pruning

ErUM-WAVE

Implementation in
 real time

Fixed latency!

Tensorflow and GPU / CPU until here

HDLmake

ErUM-WAVE

All processing needs about 766 clock cycles
 Internal clock: 100 MHz

 Latency: time it takes from input to output

 Interval: the ANN accepts new data every 715 clock cycles

Latency of the ANN itself

ErUM-WAVE

Somehow optimised due to quantisation

 Just for the ANN, the I/O needs also some FF and LUTs

Ressource usage

ErUM-WAVE

Simulation

ANN input

ANN output

ErUM-WAVE

Artix 7 A 100

Implementation on the die

ErUM-WAVE

Verification on the FPGA

I2S input Repeat the
last 100
samples

ANN
I2S output

Waveform
Generator

Oscilloscope

ErUM-WAVE

„Lab“ Setup

ErUM-WAVE

Samplefrequency is not the designed one

It‘s doing something @ 100 Hz

ANN output I2S bypass

Input

ErUM-WAVE

Sine input 0.8Vpp

„Frequency“ response

ANN output

I2S bypass

Input

Some filtering in I2S PMOD

Fitted sine to all channels – no FFT

ErUM-WAVE

Input 0.4 Vpp

Similar behaviour for lower amplitude

ErUM-WAVE

 We have started our toolchain to get the Network onto the FPGA

 Using a sine generator, the network shows some performance

 Next steps are connecting the accelerometers and tuning the output to match
the excitation

Summary Active Noise Mitigation

ErUM-WAVE

Thank you!

