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Outline 

 What is ErUM-WAVE ? 

 Overview 

 

 Our Test-Setup in Aachen 

 Active Noise Mitigation for a Michelson Interferometer 
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 Focus 
 seismic waves 
 anticipate subsurface motion at different scales 

 
 Goal 

 active compensation of vibrations 
 applicable to real situations, local properties of medium 

have to be taken into account 
 
 Application 

 PETRA-III/IV, XFEL, gravitational wave detectors 
 radio wave reconstruction in AUGER 
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Aim - Reconstruct wave field from measured data of 
network of point sensors, predict further propagation 
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How to 

WP1 
 

Prepare  
comprehensive  

data set 
 
 

WP2 
 
 

ML models 

WP3 
 
 

Verification 

WP4 
 

Implement for 
Real-time 

 application 
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 Create model of subsurface structure from measured seismic data 

 large/medium/small scales 

 simplified structural model 

→ reflections and anisotropy 

 Field measurements in region of ET 

 Simulate seismic wave field by forward modelling 

 Classical seismic approach 

 Surrogate models (grid-free, high-quality  

interpolation of high-dimensional parameter spaces) 

 Provide comprehensive training data set for WP2 
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WP1 - Simulate subsurface structure and propagating 
seismic wave field 

(mondaic.com) 
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 Test different neural network architecture for 3D wave propagation 

 Surrogate models: enable grid-free, high-quality interpolation of 
high-dimensional parameter spaces  

➝ generate artificial datasets to train other architectures (WP1) 

 CNNs: first tests on recorded seismic traces show promising results, 

(130 earthquakes recorded at 3C-stations in northern Germany)  

 Transformer models: self-attention mechanism, long time-series 

 ... 

 An essential goal is to develop architectures that can be implemented 
in FPGAs for real-time predictions (WP4) 

WP2 – Method development, networks and AI training 
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 DESY 
 WAVE network: focus on small scale, anthropogenic and technical 

noise 
 Application to PETRA-III and EuXFEL: vibrations of base plate, 

tunnel segments, ... 
 

 ET 
 Focus on large scale: local, regional, global earthquakes  

(surface waves, P-/S-waves) 
 Simulated data of GRSN to predict at target station close  

to ET 
 

 AUGER 
 Measured data: sufficient number of events/stations 
 Simulated data: higher spatial resolution 

WP3 - Verification 

ErUM-WAVE 
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 Quantisation 

 No floats: in-/outputs, weights need to be quantisized 

 Post Training Quantisation: Training using floats, 
quantisation after full training 

 Quantisation Aware Training: Training using fixed point 
numbers 

 Pruning 

 Remove small weights 

 Reduce parameters/mathematical operations 

 done after main training (re-training) 

 Converting the model to HLS4ML 

 

WP4 – Getting an ANN inside a FPGA (XILINX) 

ErUM-WAVE 

control interface 

ANN input 
ANN output 
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 Data-driven method for reconstruction of the full 3-dimensional seismic wavefield. 

 Real-time prediction at different scales: regional and local ground motion, building, measuring 
plattform, sensor. 

 Provide input for feedback-systems for noise suppression due to seismic disturbances or seismic 
noise cancellation in post-processing. 

 Applications 

 “Noise-free-labs”. 

 Reconstructed seismic wavefields for exploration of subsurface to characterize geo risks. 

 Seismic risk assessment. 

 

Summary 

ErUM-WAVE 
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Active Noise Mitigation 

our sandbox for real time ANN implementations 

 

Quite an „easy“ task –  

once the toolchain is established, more 
complex networks can be tested 

Together with the AC ET group: Markus Bachlechner, Tim Kuhlbusch 
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Lab Setup Overview 

Goal: Online noise mitigation of demonstrator interferometer based on real data 
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Actuator  

Accelerometer 

Lab Setup Overview 

Interferometer 

Screen with Photodiode 
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Characterization and Frequency Response 

Accelerometer Photodiode 

⇒ 

Determination of the Transfer function: 

• Sinusoidal excitation with fixed frequency 

• Determine measured amplitude at given frequency  

• Scan through frequency band   

Frequency [Hz] Frequency [Hz] 

Time [s] Time [s] 



Noise Mitigation Neural Network 
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Porting to FPGA:  

• Limited storage and number of operations per clock 
cycle 

• Reduce size of model ⇒ pruning 

• (No floats ⇒ quantization of parameters) 

• Performance of pruned network depends on initial 
state 

• Find “optimal” configuration ⇒ Hyperparameter 
optimization 

• Reduce to 2000 non-zero parameters 

Mitigation Principle and Optimization 

Input:  

• Measurement accelerometers 𝑎𝑘
Pos.1/2

(𝑡) 
with 𝑘 ∈ {𝑥, 𝑦, 𝑧} 

• Window of duration 𝑇 (∼ 100ms) from 𝑡𝑖 to 𝑡𝑗 

• White noise excited at 10 − 30Hz 

 

 

Output:  

• Prediction for photodiode signal 𝑠(𝑡) at time 𝑡𝑗+1 
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Performance Evaluation - BEFORE Pruning 
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Performance Evaluation - AFTER Pruning 
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Summary Python Toolchain 

Summary: 

• Build setup to develop model independent online (not yet) noise 

mitigation based on real measurements 

• High cancelation efficiency of 99.14% 

• Even though 99.1% of 215k parameters are removed 

Next: FPGA implementation 
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Unlimited parameters – very good performance 
 BUT: if the network should run on the FPGA → there are some limitation 

1. No floats  

→ use fixed point instead 

 

2. (very) limited storage for weights  

→ use low bit width 

 

3. (very) limited amount of multiplications (240 DSP slices)  

→ reduce complexity or use DSP more often 

 

4. Not all types of layers are supported (yet?) 

→ use alternative structures and layers 

 

5. Special treatment of input and output format (in/output data scaled to -1 to +1) 

raw bits of a sensor match the fixedpoint representation of the training data 

The dream of a physicist … 
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Quantisation aware training 

Use the quantisation during training 
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Quantisation aware training 

New „reduced“ network 

still too large for the FPGA 
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 Still > 27k multiplications 

 

 CONV1D are implemented  
using „stream“ implementation  
with less DSP per layer 

Number of operations 

Number of operations in model: 

    q_conv1d                      : 1500  (smult_12_8) 

    q_conv1d_1                    : 7500  (smult_12_12) 

    q_conv1d_2                    : 7500  (smult_12_12) 

    q_conv1d_3                    : 7500  (smult_12_12) 

    q_dense                       : 3000  (smult_12_12) 

    q_dense_1                     : 6     (smult_12_12) 

 

Number of operation types in model: 

    smult_12_12                   : 25506 

    smult_12_8                    : 1500 

 

Weight profiling: 

    q_conv1d_weights               : 15    (12-bit unit) 

    q_conv1d_bias                  : 5     (12-bit unit) 

    q_conv1d_1_weights             : 75    (12-bit unit) 

    q_conv1d_1_bias                : 0     (12-bit unit) 

    q_conv1d_2_weights             : 75    (12-bit unit) 

    q_conv1d_2_bias                : 5     (12-bit unit) 

    q_conv1d_3_weights             : 75    (12-bit unit) 

    q_conv1d_3_bias                : 0     (12-bit unit) 

    q_dense_weights                : 3000  (12-bit unit) 

    q_dense_bias                   : 6     (12-bit unit) 

    q_dense_1_weights              : 6     (12-bit unit) 

    q_dense_1_bias                 : 1     (12-bit unit) 
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 Train the trained network and set weights to zero 

 If weights are zero, the multiplication is not 
implemented 

Pruning 

Weight sparsity: 

    q_conv1d                       : 0.6000 

    q_conv1d_1                     : 0.7867 

    q_conv1d_2                     : 0.7375 

    q_conv1d_3                     : 0.7867 

    q_dense                        : 0.8776 

    q_dense_1                      : 0.2857 

    ---------------------------------------- 

    Total Sparsity                 : 0.8670 

Should now fit into the FPGA 

Pruning schedule: 
 q_dense: 90% 
 q_dense_1: 30% 
 others: 80% 
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Performance after pruning 
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Implementation in  
       real time 

Fixed latency! 

Tensorflow and GPU / CPU until here 

HDLmake 
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All processing needs about 766 clock cycles 
 Internal clock: 100 MHz 

 

 Latency: time it takes from input to output 

 Interval: the ANN accepts new data every 715 clock cycles 

Latency of the ANN itself 
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Somehow optimised due to quantisation 

 Just for the ANN, the I/O needs also some FF and LUTs 

Ressource usage 
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Simulation 

ANN input 

ANN output 
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Artix 7 A 100 

Implementation on the die 



ErUM-WAVE 

Verification on the FPGA 

I2S input Repeat the 
last 100 
samples 

ANN 
I2S output 

Waveform 
Generator 

Oscilloscope 
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„Lab“ Setup 
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Samplefrequency is not the designed one 

It‘s doing something @ 100 Hz 

ANN output I2S bypass 

Input 



ErUM-WAVE 

Sine input 0.8Vpp 

„Frequency“ response 

ANN output 

I2S bypass 

Input 

Some filtering in I2S PMOD 

Fitted sine to all channels – no FFT 
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Input 0.4 Vpp 

Similar behaviour for lower amplitude 
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 We have started our toolchain to get the Network onto the FPGA 

 Using a sine generator, the network shows some performance 

 Next steps are connecting the accelerometers and tuning the output to match 
the excitation 

Summary Active Noise Mitigation 
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Thank you! 


