Plan for new device's R&D using Versal for the experiments at KEK

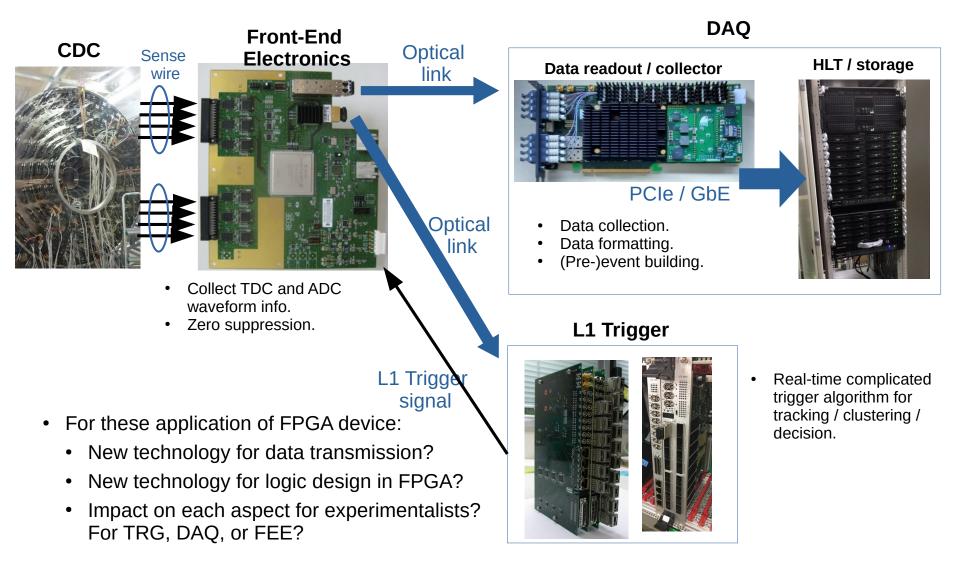
Yun-Tsung Lai

KEK IPNS

ytlai@post.kek.jp

Workshop on Realtime Machine Learning

11th Apr., 2024



Outline

- Application of FPGA in HEP experiments
 - DAQ, L1 Trigger, HLT systems
- Versal project @ KEK IPNS, Collider Electronic Forum:
 - Introduction & Overview
 - Progress on functionality study: PAM4, PCIe, AI engine, DPU
 - HLS and ML inference study plan
 - Algorithm implementation
- Summary & To do

Application of FPGA in HEP experiments

• Here we use Belle II Central Drift Chamber (CDC) as an example.

Application of FPGA in HEP experiments (cont'd)

Data Link

Data Link

FPGA

(FEE)

• Hardware acceleration:

High-level

- Not only CPU, but also GPU and FPGA.
- Acceleration on softwarebased calculation.

- FPGA FPGA transmission:
 - Optical link with FPGA MGT and optical modules.
 - Non-Return-to-Zero (NRZ).
 - Different encoding based on protocol design purposes.
 e.g. 8B/10B and 64B/66B.
 - <10 Gbps for DAQ.
 - <25 Gbps for TRG.

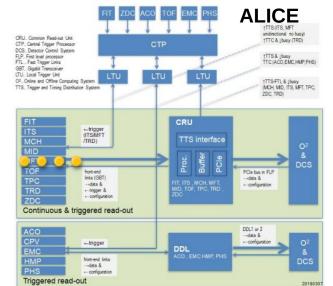
- Strong FPGA devices with:
 - Larger number of cells.
 - Larger data bandwidth.

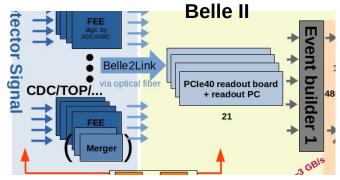
are critical for the usage in:

- **TRG**: complicated algorithm implementation.
- **DAQ**: collect and process large data.

FPGA

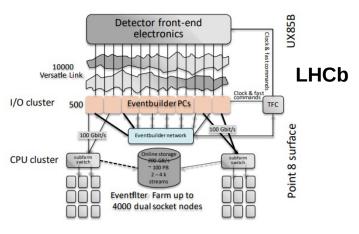
(Trigger)

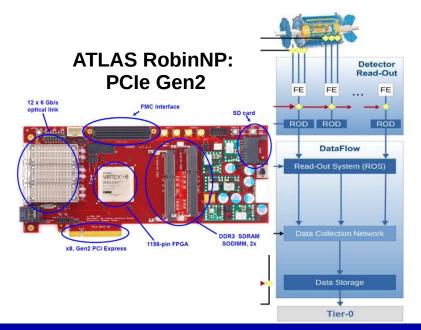

FPGA


(Readout)

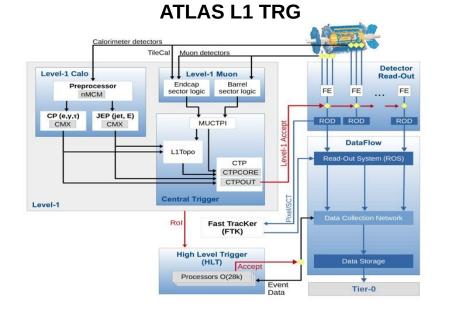
- **FPGA server transmission:**
 - Data transmission and system slow control.
 - GbE, PCI-express, VME, etc.
 - PCI-Express is the most popular one nowadays: PCIe40 in ALICE, LHCb, and Belle II.

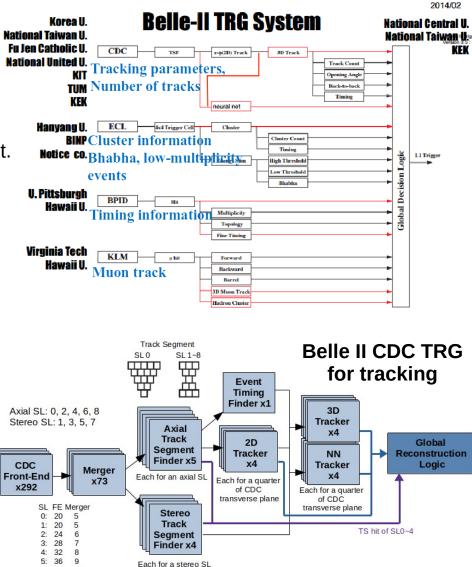
DAQ system


 Readout: PCIe has been the most popular solution for electronics → server interface.



PCIe40: PCIe Gen3





L1 Trigger system

- Provide L1 trigger signal to DAQ using FPGA chips for real-time processing on detector raw data.
- Reason for L1: Buffer storage are not enough for all data due to high event rate and short bunch spacing in collider experiment.

Yun-Tsung Lai (KEK IPNS) @ Workshop on Realtime ML

6: 40 10 7: 44 11 8: 48 12

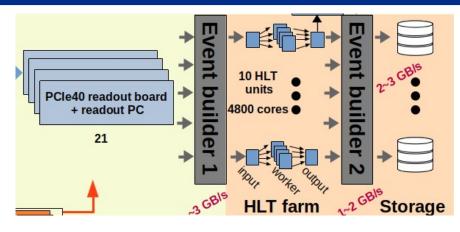
Trigger device for Belle II and ATLAS

- For TRG purpose, complicated algorithm is implemented to process detector raw data in real-time. Utilization of machine-learning in the logic design became a trend recently.
- Strong FPGA with large resource: improve the logic itself, resolution of triggering, reduce the background rate, and perform everything within a latency limit.

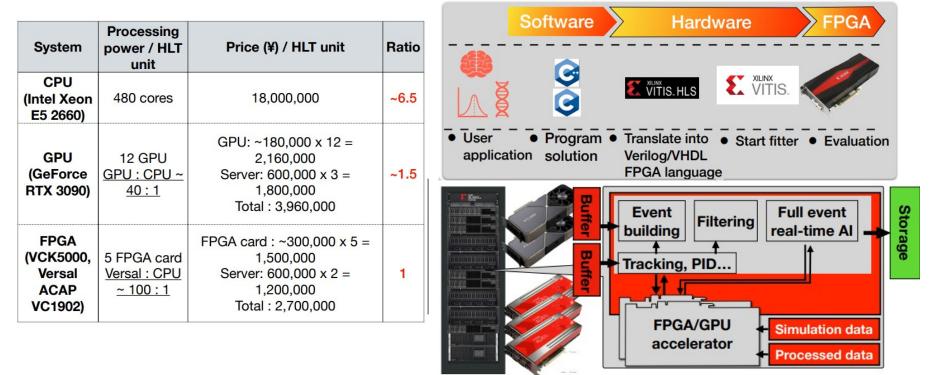
Belle II UT3

ATLAS Muon Trigger processor

Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B


Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Xilinx UltraScale+ XCVU13P XCZU5EV GTH,GTY: 16.8 Gbps with 64B/66B

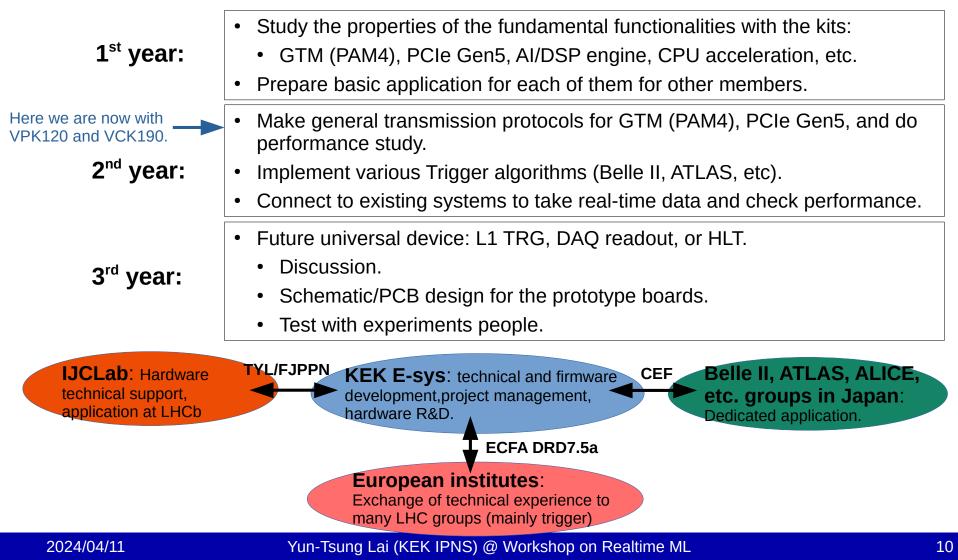

2024/04/11

HLT

- HLT: Computing servers with reconstruction software.
 - In Belle II: HLT software = offline software.
- How about the options other than CPU?
 - GPU? FPGA for hardware acceleration?

source: Qi-Dong Zhou, Shandong Univ.

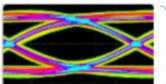
Versal project @ KEK IPNS


- "Collider Electronics Forum": A new platform for electronics associated technical communication and common device R&D in Japanese HEP community.
 - KEK IPNS: E-sys, Belle II, Energy Frontier groups.
 - Experiment groups (Belle II, ATLAS, ALICE, nuclear physics) in Japan.
- We purchased a few evaluation kits of the Xilinx Versal series ACAP for joint study.
 - Plan: Common and general studies on the new technologies for future electronics device's R&D. Now we plan to use Versal for L1 TRG, DAQ or HLT purpose.

2024/04/11

Versal project: General plan and roadmap

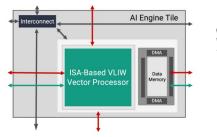
- Our goal: R&D of a new general FPGA device using the Versal ACAP.
 - A L1 TRG, DAQ, or HLT device, and also general for different experiments.
 - One clear target is UT5 for L1 TRG of both Belle II and ATLAS.


New technology in Versal FPGA: PAM4, PCIe, AI engine

- Pulse Amplitude Modulation (PAM4):
 - Four distinct voltage levels to break through the limit of Non-Return-to-Zero (NRZ), which is ~25 Gbps.
 - Using VPK120 to study it.
 - Suitable for high-speed link in L1 TRG. Hope to be pioneer to use it in future TRG board.
- PCle Gen5:
 - PCIe has been popular option in HEP.
 - ALICE, LHCb and Belle II has been using PCIe40 (Gen3).
 - Study the properties of newer generation of PCIe is beneficial for the future readout device's development.
 - Using VPK120.
- Al engine: A new technology for data processing.
 - Help for our algorithm construction in TRG.
 - C programmable.
 - Together, we study many options of HLS and ML inference in FPGA, and their performance in different TRG algorithms.
 - Will use VCK190.

2024/04/11

Limit: ~25 Gbps


PAM4 (Pulse Amplitude Modulation)

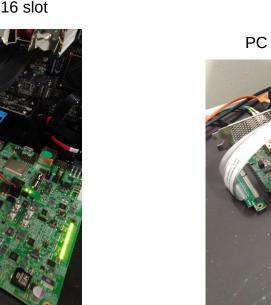
Four distinct voltage levels. Two bits per clock cycle.

4 levels

2024/04/11

Yun-Tsung Lai (KEK IPNS) @ Workshop on Realtime ML

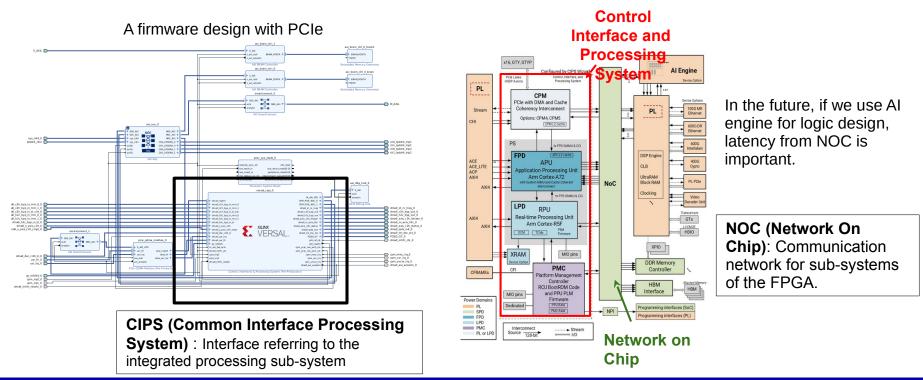
Test bench setup @ KEK E-sys group

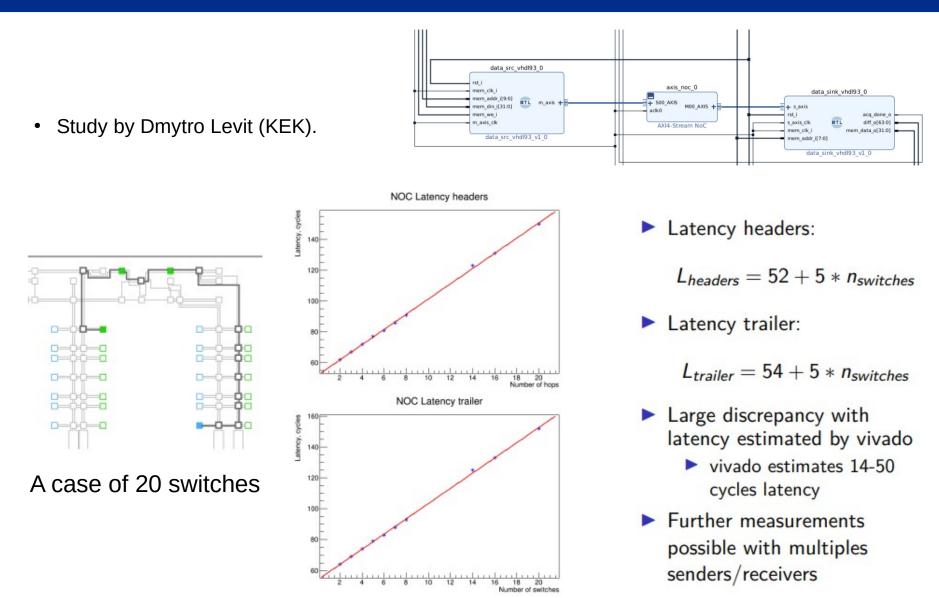

- The test bench of VPK120 has been built at E-sys group and released to our members for dedicated studies.
- VCK190 has also arrived at KEK in March. Preparation study is ongoing and will be ready soon.
- Special thanks to Mathis Maurice, internship in E-sys group in 2023 summer, for helping this VPK120 preparation work!

PC side: PCIe Gen5 x16 slot

VPK120 test bench: 2023 summer

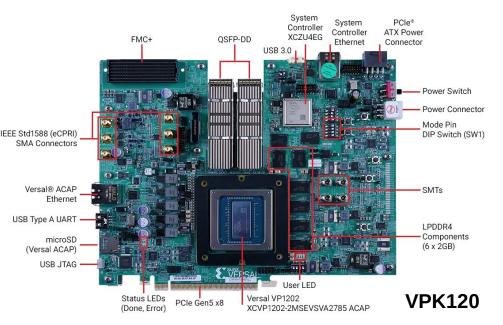
PC side: PCIe Gen4 x8 slot

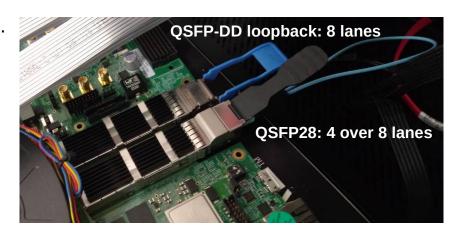




Firmware making with Versal: PS, CIPS and NOC

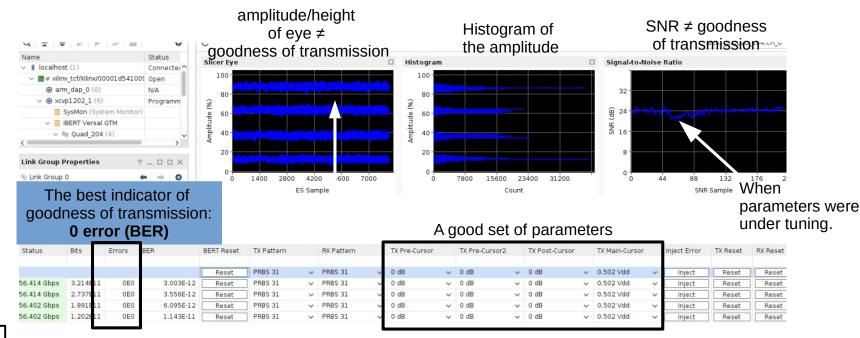
- In our experience, FPGA firmware making is:
 - Writing HDL codes and using IPcore to control all the **Programmable Logic (PL)**.
- But Versal is an ACAP containing lots of sub-systems together with the FPGA.
 - Not only PL, but also **Processor System (PS)**.
 - Firmware making tends to rely on the automatic block design rather than the traditional code-writing way.
 - For now, we still have limited understanding in PS.




Latency measurement with NOC

Versal transceivers: GTYP and GTM

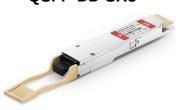
- GTYP: PCIe 5.0 (16) and FMC+ (8)
 - 1.25 ~ 32.75 Gb/s.
 - Various encoder supported.
- GTM: QSFP-DD (8*2)
 - NRZ:
 - 9.5 ~ 15, 19 ~ 29 Gb/s.
 - PAM4:
 - 19 ~ 30, 38 ~ 60 Gb/s
 - 76 ~ 112 Gb/s: "Half density mode" by combining two lanes.
 - No encoding is supported. Need to be make them manually in RTL.
- Our test setup for transceiver study:



PAM4 56 Gbps with GTM IBERT, QSFPDD loopback

- PAM4, 56 Gbps per lane. QSFPDD loopback module.
 - Parameter tuning on cursor position and termination voltage, etc, is necessary to have stable transmission (0 bit error).

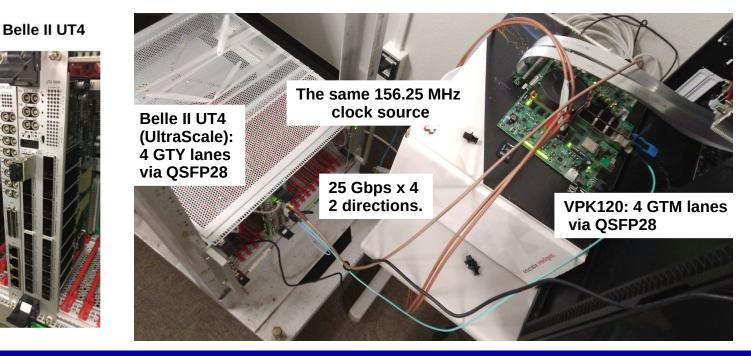
DesignCon 2019 Enabling IBIS-AMI Simulations for Systems Containing PAM4 Retimers at 112Gbps



Plan

- Further study with realistic QSFPDD module and MPO-16 is ongoing.
 - Much higher BER (~10⁻⁶)
 - Forward-Error-Correction will be implemented in our protocol.
 - Also other types of PAM4-supported modules: FireFly, etc.

OSFP-DD-SR8



2024/04/11

Protocol development and connection test

- Both 8B/10B and 64B/66B (sync. gearbox) are tested with GTM.
- Raw mode with No encoding: A new generalized protocol has been also made.
 - Similar logic to my Belle II TRG protocol design.
 - (de)scrambler for DC balance.
 - Tested to be stable for both NRZ and PAM4.
- Using this new generalized protocol, connection test (25 Gbps x4, NRZ) between Belle II UT4 and VPK120 has been also tested. Stable in few hours.
 - Will test with ATLAS muon board soon.

2024/04/11

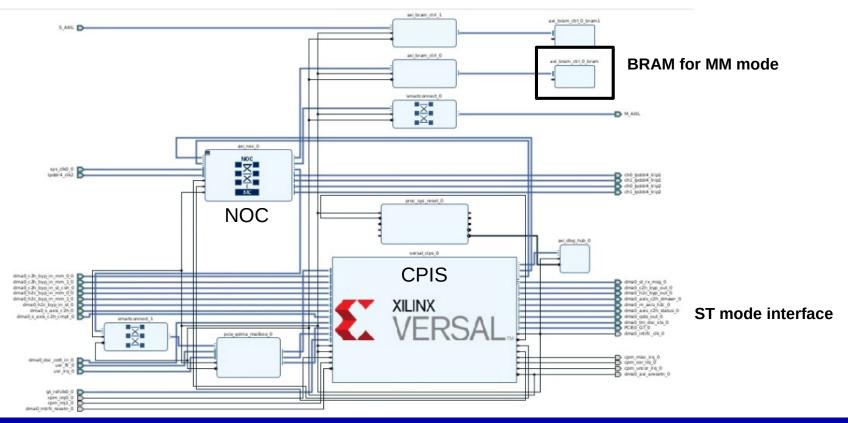
Latency for Versal GTYP and UltraScale(+) GTY

- Latency is a big concern for L1 TRG system.
 - Since the beginning of Belle II TRG preparation, we have been studying latency reduction in data links.
 - Now we have 25 Gbps running.
- The following are the simulation values from Xilinx website with internal encoder.
 - UT4: Virtex UltraScale
- Measured latency in **bold**: Based on the Belle II TRG protocol.

	Raw (UI)	Raw + Async. 64B/66B (UI)	10 (Rav (ns)		10 G 64B/ (ns)	•	25 C Raw (ns)	Sbps, /		Gbps, 8/66B
Versal GTYP 64/64	1127			Typi	cal va	alue for	1 lir	nk in the	ح	
Versal GTYP 64/32	688			. .	ical value for 1 link in the nt Belle II TRG: 50~100 ns					
UT4 GTY 64/64	768	1458	77	115	146	147	31	33	58	58
UT4 GTY 64/32	414	990	41	90	99	122				

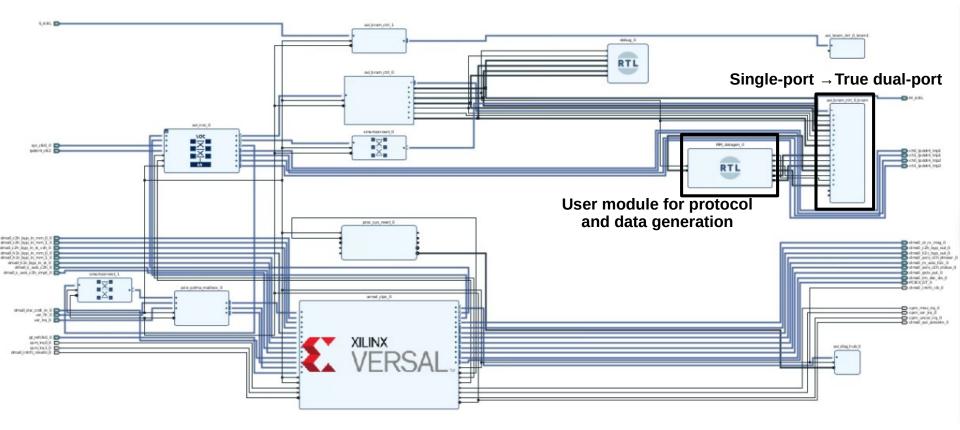
- If we adapt to use Versal GTM: Larger latency will be introduced.
- The following are the max. simulation values from Xilinx website with No encoding.
 - Measured latency in **bold**: Based on our generalized protocol.
- For the same setup, latency in term of clock-cycle is basically the same.
 - Higher speed is preferred as the processing latency is much smaller.
 - In general, latency of GTM is much larger that that of UltraScale(+) GTY or so.
- If we use GTM, just go with PAM4 with > 50 Gbps.

Versal GTM	Unit Interval (UI)	10 Gbps (ns)	25 Gbps (ns)	56 Gbps (ns)	106 Gbps (ns)
NRZ 64b	5833	583 640	233 256		
NRZ 160b	4964	496 730	198 237		
PAM4 160b	2957			53 97	
PAM4 256b	3233			57 133	
PAM4 320b	3095				29 66
PAM4 512b	3690				35

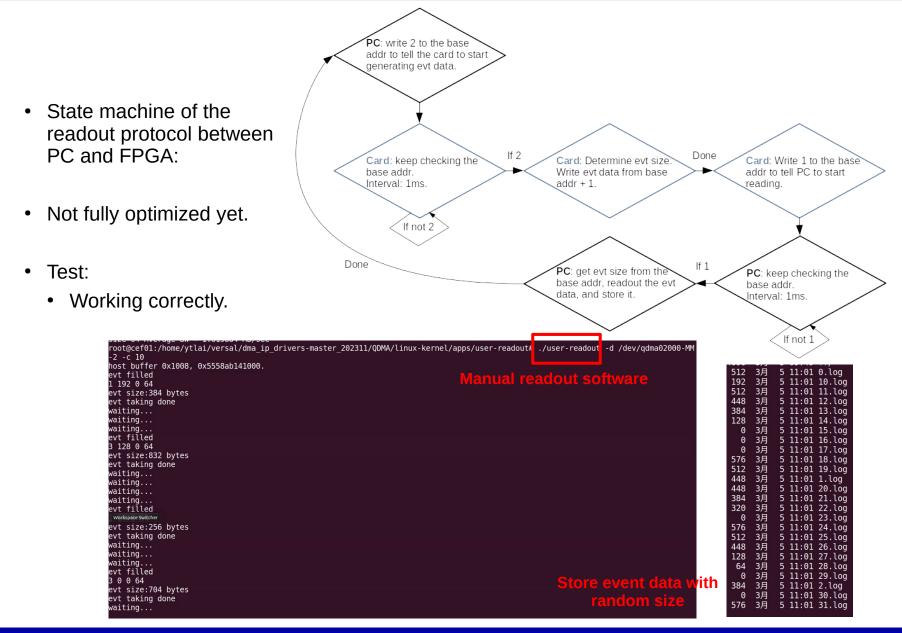

PCIe-CPM test

- CPM-PCIe example from Xilinx: XTP712
 - CPM: building block design for PCIe with integrating DMA, CIPS, NOC, etc.
 - PCIe Gen4 x8: GTYP links are up. 16 Gbps per lane.
- Driver software: QDMA, also a Xilinx IP. ٠
- Data exchange test with the QDMA • software:
- We spent much time in mine-sweeping ٠
 - Will start to make real protocol for event data readout purpose.
 - Similar to the one in Belle II DAQ

lardwa	are		? _ 🗆	L X DI	DRMC - DDRMC_1	DDRMC -	DDRMC_2 ×							
$\mathbf{Q} \mid \Xi \mid \Leftrightarrow \mid \boldsymbol{\beta} \mid \models \mid \gg \mid \equiv \mid \qquad \diamondsuit$				0	Status Margins Analysis									
Name Status				Status Status Registers						,		L Chart (Fran	- 01 - 0	
v Ng Quad_102 (4)				^	Status Status	Registers					Table Chart (Freq 0) - Left Aligned Chart (Freq 0) - C			
	Pd CH_0		15.987 Gbps		Name: DDRMC_2					Q B	€ \$ P	S Read Mode ✓	Simple Pattern	ı v
	Pc] CH_1		15.977 Gbps					Name		Left Margin (tap	s) Center	Point		
	₽d CH_2		15.97 Gbps					✓ Freq	0					
	Pd CH_3		15.954 Gbps							~ Bj	te 0			
	✓ № Quad_10:	3(4)			Gate Tracking St						Nibble 0		61	
	P⊲ CH_0		15.973 Gbps		Message:	No errors o	detected during cal	ibrat	ion.	Nibble 1 V Byte 1			61	
	Pig CH_1		15.963 Gbps		Error:									
	₽d CH_2		15.98 Gbps								Nibble 0		62	
	№ CH_3		15.984 Gbps								Nibble 1		62	
	1 DDRMC_1 (L	PDDR4) (x0y0)	PASS		Calibration					~ B	te 2			
	DDRMC_2 (L	PDDR4) (x1y0)	PASS		Stage				Status		Nibble 0		62	
	DDRMC_3		DISABLED	~	Stage SCAL STAGE.01				Status ^		Nibble 1		62	
_									S Pass	~ B	te 3			
Properties 2 – C C X				CAL_STAGE.02_F0_MEM_INIT				Nibble 0		61				
				CAL STAGE.04 F0 DQS GATE CAL SPASS				Nibble 1		60				
			\leftarrow \rightarrow						% Pass	~ B)	te 4			
Select an object to see properties				\CAL_STAGE.05_F0_WRITE_LEVELING \CAL_STAGE.06_F0_READ_D0_CAL \CAL_STAGE.07_F0_NRITE_D0_D0L_CAL \CAL_STAGE.07_F0_NRITE_D0_D0L_CAL \CAL_STAGE.07_F0_NRITE_D0_D0L_CAL \CAL_STAGE.07_F0_NRITE_D0_NRITE_					Nibble 0		64			
									Nibble 1		64			
cl Con Q 🗶	· · · 9	es Serial I	/O Links ×	Serial I/O Se	RX PLL Status	TX PLL Status	Loopback Mode		Termination Voltage	RX Comr	ion Mode	TXUSERCLK Freq	RXUSERCLK Fre	q
· ~	0	Inject	Reset	Reset]		User Design	~	800mv ~					
n v	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~			499.512		292
1 V	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Program		499.512		292
n v	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	~		499.072		779
n v	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Program		499.292		438
ı v	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~			498.413		365
1 V	0	Inject	Reset	Reset	Locked	Locked	User Design	~	800mv ~	Program		498.413		585
		Inject	Reset	Reset	Locked	Locked	User Design	~	800mv v	Program	mable 🗸	498.486	498.	560
ı v		- inject			Locked	Locked				Program		498,560		512

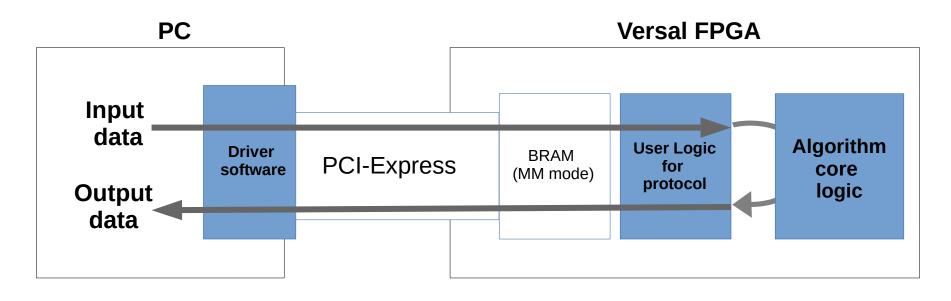

	[root@cef01 linux-kernel]# ./bin/dma-ctl dev list
	qdma02000 0000:02:00.0 max QP: 8, 0~7
	qdma02001 0000:02:00.1 max QP: 0, -~-
	qdma02002 0000:02:00.2 max QP: 0, -~-
	[root@ccf01 linux-kernel]# ./bin/dma-ctl qdma02000 q add idx 0 dir bi
ıy	dma-ctl: Warn: Default mode set to 'mm'
	qdma02000-MM-0 H2C added.
	qdma02000-MM-0 C2H added.
	Added 1 Queues.
	[root@cef01 linux-kernel]# ./bin/dma-ctl qdma02000 q start idx 0 dir bi
7	dma-ctl: Info: Default ring size set to 2048
۲.	1 Queues started, idx $0 \sim \overline{0}$.
	1 Queues started, idx $0 \sim 0$.
	<pre>[root@cef01 linux-kernel]# ./bin/dma-to-device -d /dev/qdma02000-MM-0 -s 32</pre>
	size=32 Average BW = 177.377688 KB/sec
	<pre>[root@cef01 linux-kernel]# ./bin/dma-from-device -d /dev/qdma02000-MM-0 -s 32</pre>
	size=32 Average BW = 132.445391 KB/sec
	[root@cef01 linux-kernel]# ./bin/dma-ctl qdma02000 q stop idx 0 dir bi
	Stopped Queues 0 -> 0.
	[root@cef01 linux-kernel]# ./bin/dma-ctl qdma02000 q del idx 0 dir bi
	Deleted Queues 0 -> 0.

- The Xilinx PCIe-CPM IP provides two modes:
 - Memory-Map (MM)
 - Streaming
- Next, we started to make the firmware/software for continuous event readout for realistic experimental purpose.



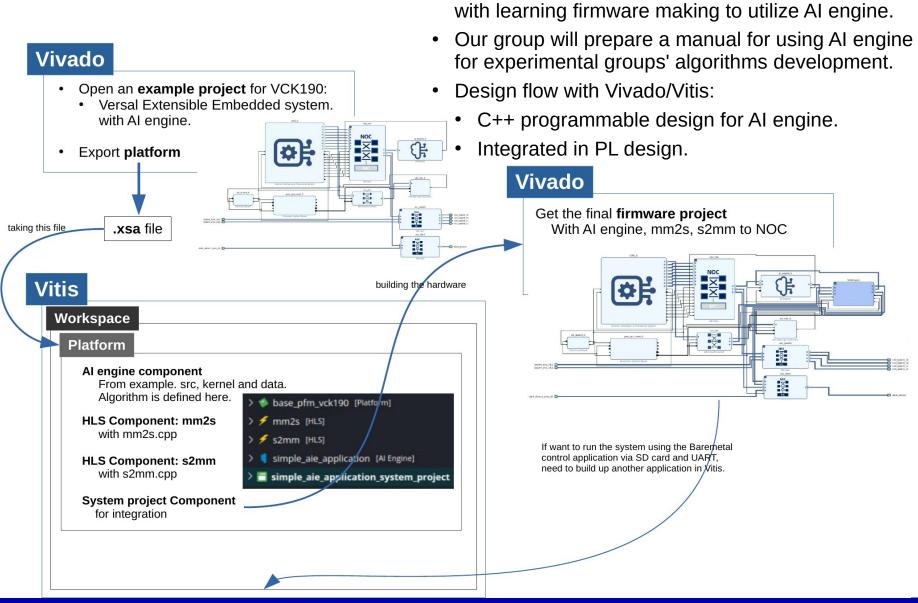
PCIe-CPM firmware: Event readout using MM mode

• New firmware based on MM mode.



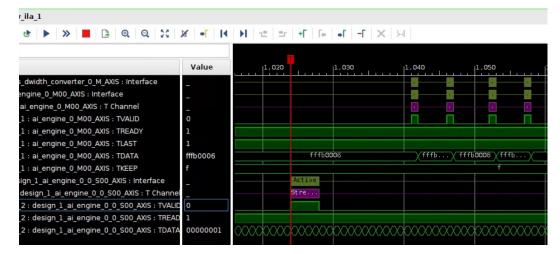
PCIe-CPM firmware: Event readout using MM mode

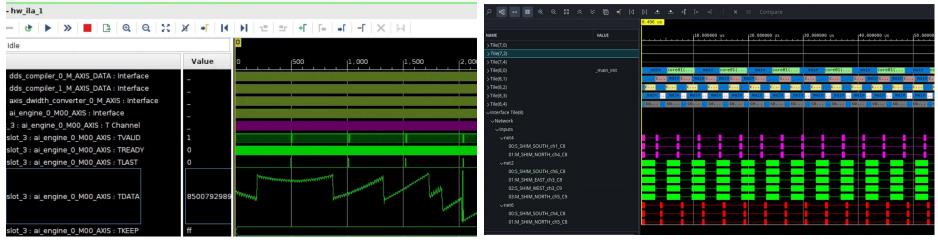
PCIe-CPM firmware: Event exchange using MM mode


- A data exchange flow is also made for firmware and software.
- 1 event in 1 event out.
- In order to test the algorithm core logic to be implemented in Versal kits.

Plan

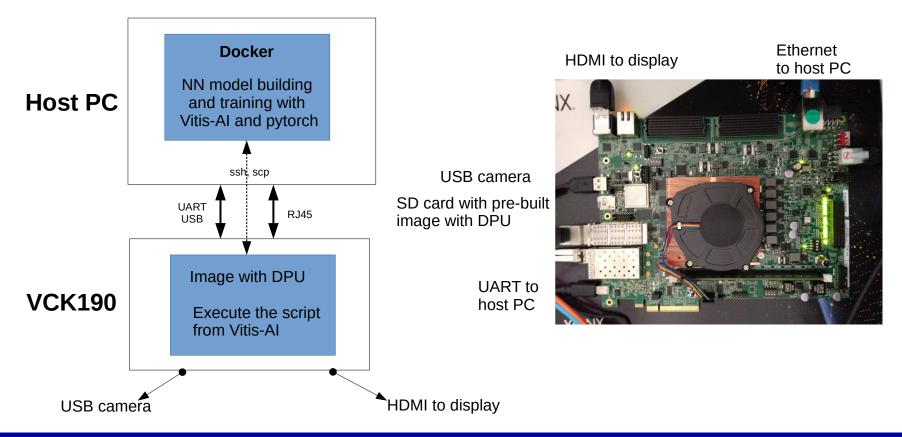
- Further optimize the design and measure the throughput.
- Try to use ST mode: Consulting with Xilinx engineers.


Al engine



As VCK190 arrived at KEK in 2024 March, we started

Al engine: test


- The work flow of building up a firmware with AI engine has been studied.
 - PL \rightarrow Al engine \rightarrow PL.
- Some logics were tested.
 - Arithmetic calculation
 - FIR filter
 - leNet

Vitis-AI with DPU

- VCK190 has another feature of Deep Learning Processor Unit (DPU), which is a a configurable computation engine dedicated to convolutional neural networks.
- The design flow does not involve Vivado for PL design. The device is utilized with a small operation system like a server, and works can be executed in it.
 - A higher-level application.

Vitis-AI with DPU: test

The environment with docker and DPU setup for VCK190 has been ready.

Vitis-AI within docker

Processed image shown on the display

Image processing in DPU

examples/vai library/samples/class	fication/images/002_JPEG
XAIEFAL: INFO: Resource group Avai	
XAIEFAL: INFO: Resource group Stat:	
XAIEFAL: INFO: Resource group Gene	
WARNING: Logging before InitGoogle	
I1119 10:19:08.931777 1536 demo.h	<pre>op:I193] batch: 0 image: /home/root/Vitis-AI/examples/vai_library/samples/classification/imag</pre>
es/002.JPEG	
	s_result.hpp:24] r.index 109 brain coral, r.score 0.999749
	s_result.hpp:24] r.index 955 jackfruit, jak, jack, r.score 0.000158421
	s_result.hpp:24] r.index 973 coral reef, r.score 5.828e-05 s result.hpp:24] r.index 390 eel, r.score 1.66975e-05
	s result.hpp:24] r.index 590 eet; r.score 1.009/16/05 s result.hpp:24] r.index 50 electric ray, crampfish, numbfish, torpedo, r.score 7.88734e-06
11115 10115.001552502 1550 proces.	
I1119 10:19:08.932798 1536 demo.h	<pre>op:1193] batch: 1 image: /home/root/Vitis-AI/examples/vai library/samples/classification/imag</pre>
es/002.JPEG	
	s_result.hpp:24] r.index 109 brain coral, r.score 0.999749
	s_result.hpp:24] r.index 955 jackfruit, jak, jack, r.score 0.000158421
	s_result.hpp:24] r.index 973 coral reef, r.score 5.828e-05
	s_result.hpp:24] r.index 390 eel, r.score 1.66975e-05 s_result.hpp:24] r.index 5 electric ray, crampfish, numbfish, torpedo, r.score 7.88734e-06
11119 10:19:00:955192 1550 process	
	examples/vai_library/samples/classification# ./test_video_classification_resnet18_pt (
	cv/4_5.2-r0/git/modules/videoio/src/cap_gstreamer.cpp (1081) open OpenCV GStreamer v
annot query video position: status=0	
XAIEFAL: INFO: Resource group Avail	
XAIEFAL: INFO: Resource group Static	is created.
XAIEFAL: INFO: Resource group Generi	c is created.
WARNING: Logging before InitGoogleLo	gging() is written to STDERR
I1119 10:18:38.351377 1517 demo.hpp	:752] DPU model size=224x224
I1119 10:18:38.392418 1517 demo.hpp	:752] DPU model size=224x224
I1119 10:18:38.433463 1517 demo.hpp	
I1119 10:18:38.474534 1517 demo.hpp	
I1119 10:18:38.515609 1517 demo.hpp	
I1119 10:18:38.556959 1517 demo.hpp	
I1119 10:18:38.598032 1517 demo.hpp	
I1119 10:18:38.639214 1517 demo.hpp	:752] DPO model S120=224X224

root@xilinx-vck190-20222:~/Vitis-AI/examples/vai library/samples/classification# ./test ipeg classification resnet18 pt ~/Vitis-AI/

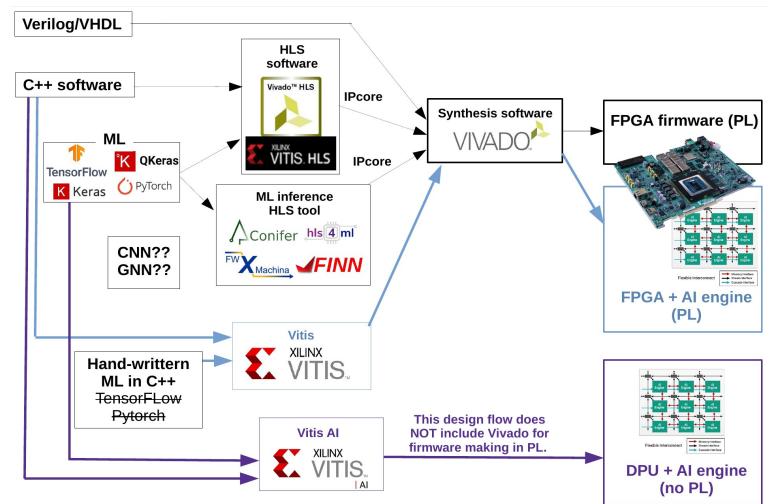
Camera video processing in DPU

2024/04/11

Yun-Tsung Lai (KEK IPNS) @ Workshop on Realtime ML

0 -t 8 warning: C

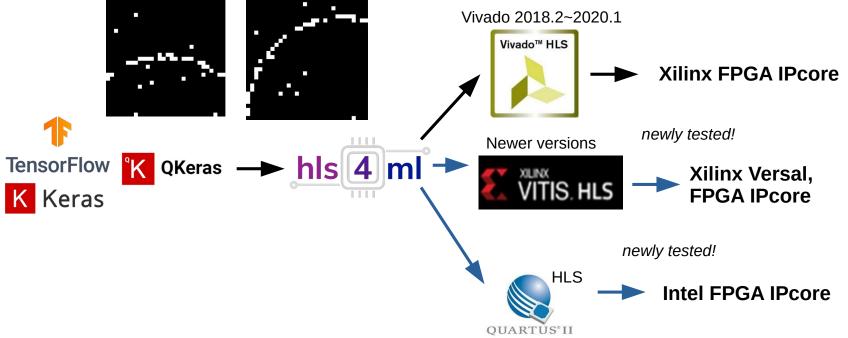
Algorithm making in FPGA: HLS, ML, AI engine

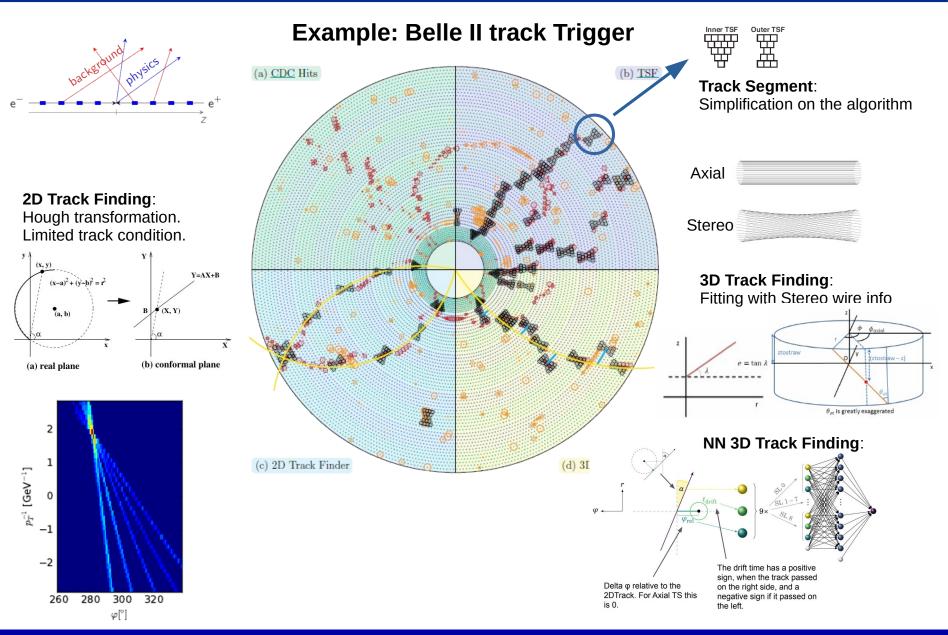

- Next step, we have many algorithms from Belle II, ATLAS, or so, to play in Versal kits.
 - Before that, let's think about the methodologies to do so.
- Considering algorithm implementation:
 - HDL logic in firmware.
 - HLS: software \rightarrow firmware.
 - ML inference
 - Al engine.

Depend on the different targets, our selection on FPGA differs. A strong FPGA? ACAP with AI engine? DPU?

- Not only the hls4ml, HLS tools has much more for ML and non-ML application.
 - Similarly, Versal AI engine requires a different design flow to make software/firmware.
- For this part of the work, we generalize the work plan into a roadmap in a technical perspective.

HLS, ML, AI engine: roadmap


- As a member of KEK E-sys group, we hope to understand the basic utilization on each, and build a database of such technical knowledge, to support our experimental colleagues.
- We are recruiting young student to learn/work with us.
 - We also plan to make a series of hand-on lecture for each of them.

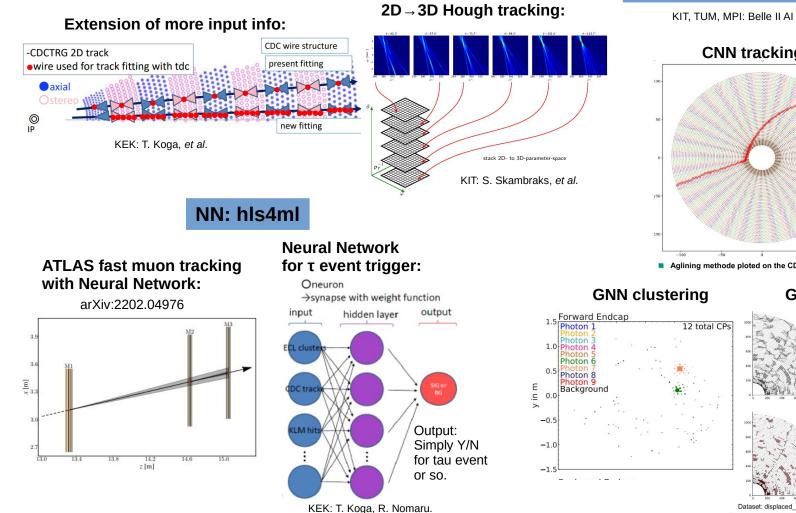

hls4ml

- hls4ml: A package for machine learning inference in FPGA.
 - Already lots of utilizations with Vivado HLS in Belle II and ATLAS.
- Yiyang Ding, our summer internship student in 2023, performed general studies on it.
 - A NN model for simple tracker and tested with VPK120!
 - Also tested with Intel FPGA with Quartus.
 - A manual has been prepared.



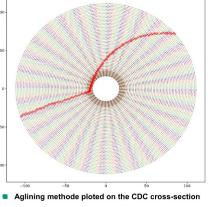
Next step: what kinds of algorithms to implment?

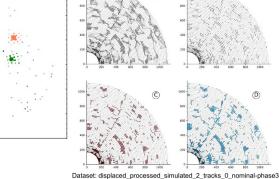
2024/04/11


Next step: how to implment?

2024/04/11

Prospect: more new ideas


Additional dimension: More resource in FPGA


More than NN: CNN or GNN?

KIT, TUM, MPI: Belle II AI trigger group

CNN tracking

GNN tracking

- The Collider Electronics Forum at KEK IPNS and Japanese HEP community started a project using the evaluation kits of the Xilinx Versal ACAP targeting on the future R&D of a new universal FPGA device.
- Some of the fundamental functionalities of the Versal evaluation kits have been studied.
 - Firmware making, high-speed transmission, PCIe, AI engine, DPU, and HLS for ML inference.
- Future plan:
 - More basic studies on HLS tools, ML inference packages, and AI engine will be performed.
 - Implement different physics algorithms for different experiments.
 - We will also discuss about the new device's R&D plan.
 - The next generation of Universal Trigger board (UT5).

Backup

2024/04/11

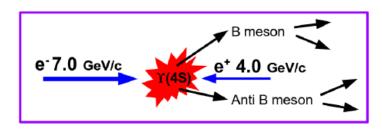
Evaluation kits for Versal

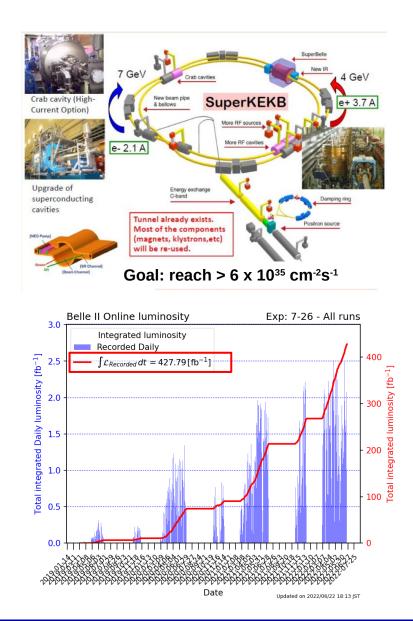
- Features the VC1902 Versal AI Core series
- For using AI and DSP engines with greater compute performance that current server class CPUs

- Features the VM1802 Versal[™] Prime series
- The world's first ACAP
- A software programmable infrastructure and connectivity

- Features the VH1582 Versal[™] HBM series
- convergence of memory, compute, and connectivity with 32G HBM and 112G PAM4

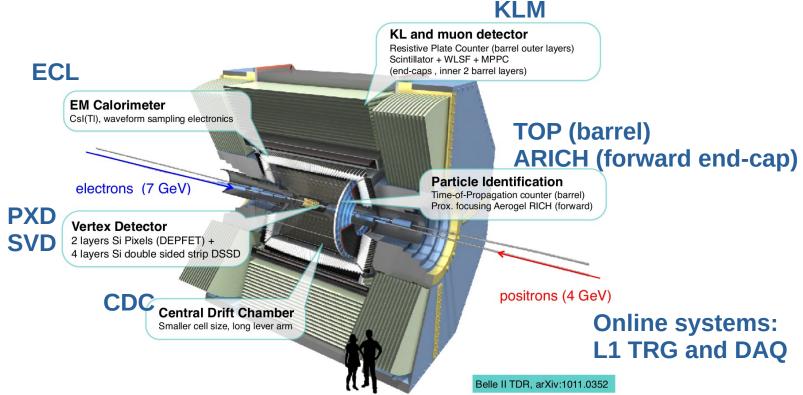
- Features the Versal AI Core Series
- For (AI) Engine development with Vitis and AI Inference development
- Not flexible for FPGA firmware


- Features Versal[™] Premium series VP1202
- Multiple high-speed connectivity option
- Massive serial bandwidth, security, and compute density


- Features the VE2802 Versal AI Edge series
- Simpler version of VCK190
- Will come out in 2024

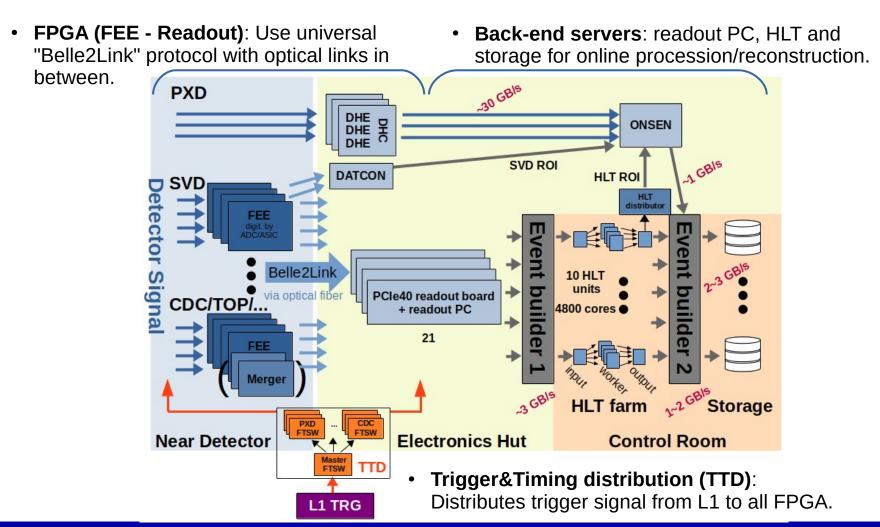
SuperKEKB

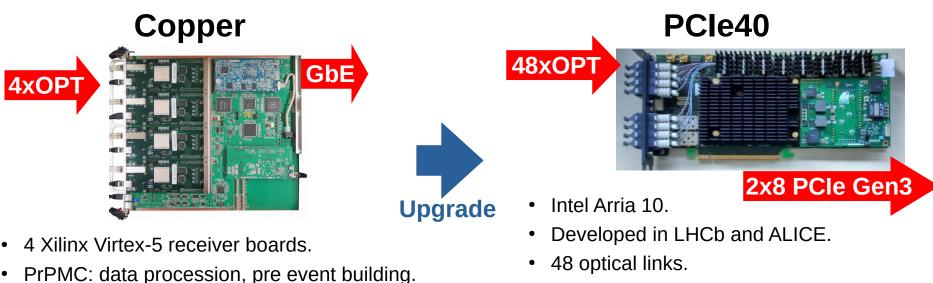
- SuperKEKB: Upgraded from KEKB.
 - More than 30 times larger luminosity of KEKB with nano beam scheme.
- Asymmetric energy collider:
 - 7.0 GeV e^{-} and 4.0 GeV e^{+} for Y(4S) $\rightarrow B\overline{B}$.



- Luminosity achievement:
 - L_{peak} = 4.65 x 10³⁴ cm⁻²s⁻¹.
 World record. ~Two times of KEKB record with much smaller beam current.
 - $L_{int} = \sim 427 \text{ fb}^{-1} \text{ up to Jun. 2022.}$
- Will resume beam collision in 2024 with PXD full installation.

Belle II detector


• Belle II: Newly-designed sub-detectors set to improve detection performance.

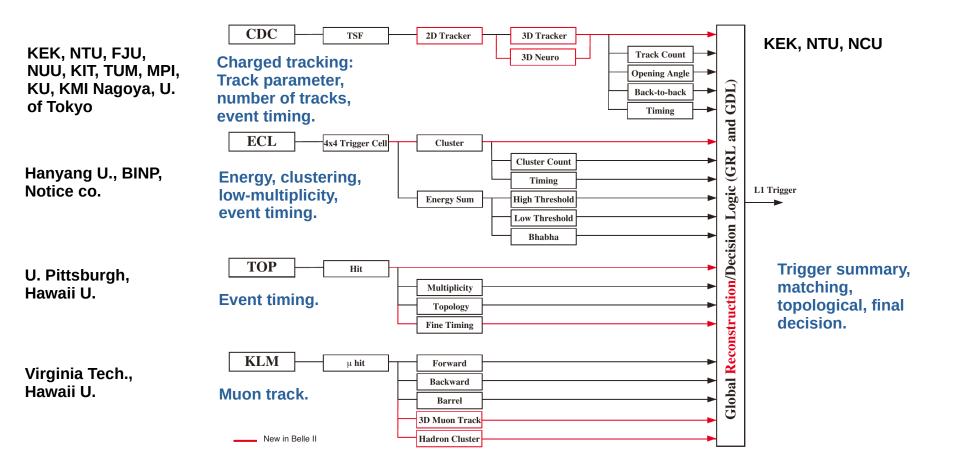

- Physics target of Belle II:
 - Rare B, τ , charm physics, Dark Matter search, CP Violation.
- Requirement for data taking:
 - High L1 trigger rate (~30 kHz), high background, and large event size.

Belle II DAQ system

- Pipeline common readout system for each sub-detector.
 - Except for PXD: data reduction system with ROI.
- Target of performance: 30 kHz L1 rate, ~1% of dead time, and a raw event size of 1 MB.

Readout device and its upgrade

In total 203 coppers were used in Belle II.


 In total 21 PCIe40 boards will be used in Belle II.

Considerations for upgrade:

- Difficulty of maintenance:
 - Increasing number of malfunctioning pieces.
 - Many different boards in system.
 - Parts out of production already.

- Limit of the system on further improvement:
 - Output throughput by GbE: 1Gbps.
 - CPU usage: ~60% at 30 kHz trigger rate.

• 4 sub-trigger systems + 2 global trigger systems.

Conditions and requirements for TRG

- Requirements:
 - Overall latency < 4.4 μ s.
 - ~100% eff. for hadronic events.
 - Max 30 kHz @ 8*10³⁵ cm⁻²s⁻¹
 - Timing precision: < 10 ns
 - Event separation: 500 ns

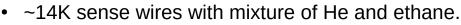
- Examples of technical challenges so far:
 - Low-multiplicity trigger mainly based on ECL, but contamination from noise, beam bkg or Bhabha.
- Energy trigger with high eff. but high rate too.
- Injection bkg.

.

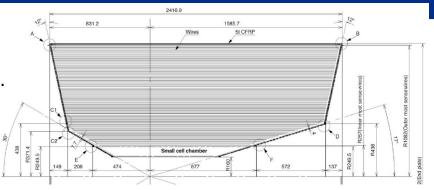
- Drawback of track trigger at endcap.
- High track trigger rate due to crosstalk noise.
- Latency budget due to transmission or complicated logics.
- Phase2 Lum, Record C.S. (nb) R@L=5.5x10³³ (Hz) R@L=8x10³⁵ (Hz) Process TRG logic Upsilon(4S) 1.2 6.6 960 CDC 3trk(fff) ECL high energy(hie) ECL 4 clusters(c4) Continuum 2.8 15.4 2200 0.8 4.4 640 μμ CDC 2trk(ffo) etc 0.8 4.4 640 ττ Bhabha 242 350 * 44 ECL Bhabha(bhabha, 3D bhabha) 19 * 13.2 2.4 Y-Y CDC 2trk(ffo) Two photon 71.5 10000 13 etc Total 67 357.5 ~15000
- Physics processes in interest:

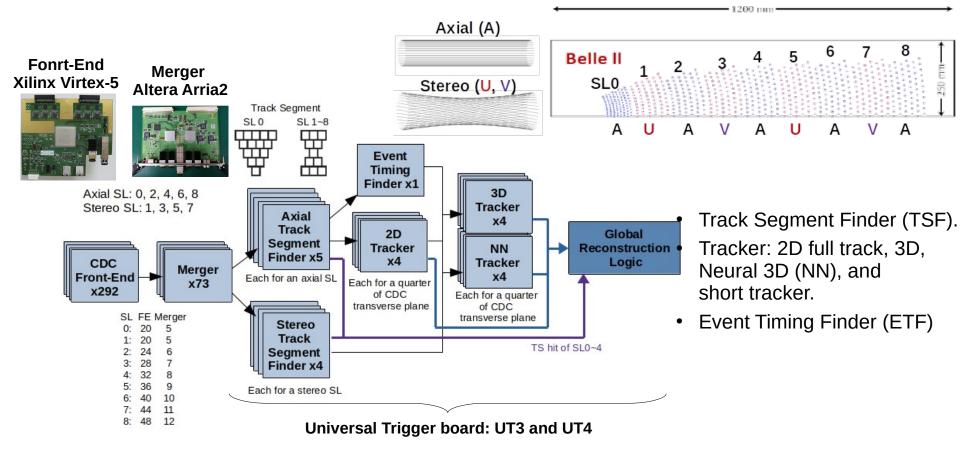
Data transmission protocol at Belle II TRG

- Data transmission in TRG: Xilinx and Altera FPGA MGT, QSFP module, and MPO cable.
- The original plan was to use the open-source Aurora protocol, but large latency was introduced and exceeded the L1 limit (4.4 μ s).
- Belle II CDCTRG developed an user-defined transmission protocols: •
 - Smaller latency than Aurora's: Latency reduction is critical for L1!
 - User-friendly interface.
 - 8B/10B and 64B/66B encoding.
 - Support various Xilinx and Altera MGT.
 - Bit error rate $< 10^{-18}$ /s with few weeks BERT.
 - Flow control and synchronization.


Latency comparison using UT3 (Virtex-6 GTX and GTH)

Protocol	Lane rate	user_clk	Link type	Latency (ns)	
Aurora 8B/10B	5.08 Gbps	$254 \mathrm{~MHz}$	GTX-GTX	185~190 •	For U
Raw-level 8B/10B	5.08 Gbps	$254 \mathrm{~MHz}$	GTX-GTX	$132 \sim 136$	• Up
	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTH-GTX	$132 \sim 136$	•
	$5.08 { m ~Gbps}$	$254 \mathrm{~MHz}$	GTH-GTH	$91 \sim 95$	• La
	5.08 Gbps	$254 \mathrm{~MHz}$	GTX-GTH	$91 \sim 95$	
Aurora 64B/66B	10.16 Gbps	$158.75 \mathrm{~MHz}$	GTH-GTH	$296 \sim 302$	
Raw-level 64B/66B	11.176 Gbps	$169.33 \mathrm{~MHz}$	GTH-GTH	$106 \sim 112$	

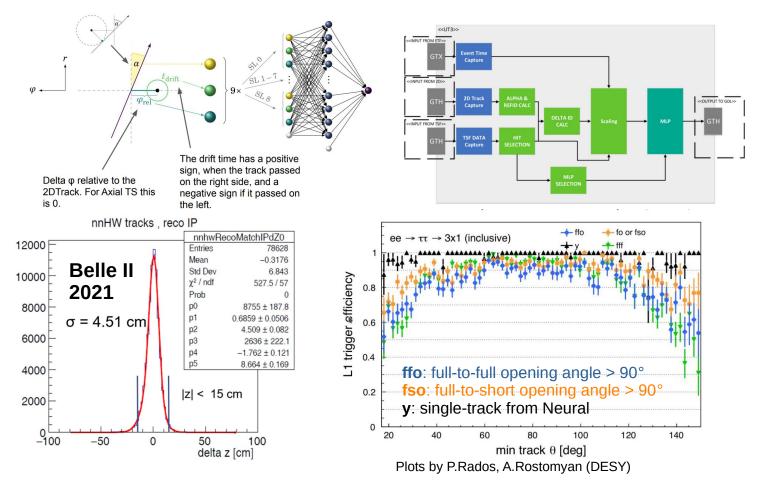

JT4:


- p to 25 Gbps using 64B/66B.
- atency: ~ 50ns.

Track trigger with CDC

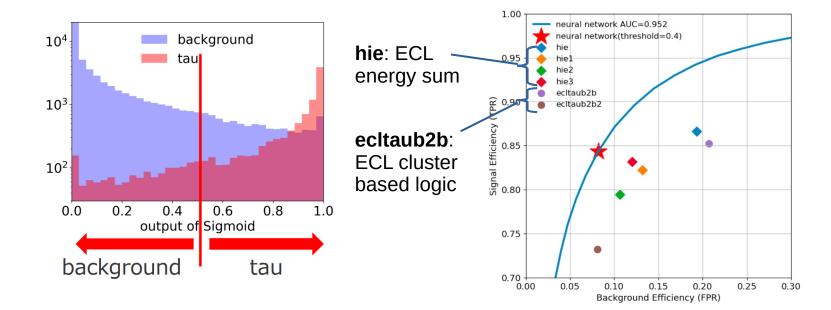
- An alternative AUAVAUAVA wire configuration for 3D information:
 - A: Axial super-layer (SL) parallel to z-axis
 - U, V: Stereo SL with two small stereo angles.

Neural z trigger


 In addition to the conventional 3D tracker based on fitting method, Belle II has a Neural Network 3D tracker (NN) running in parallel in the system. S. Neuhaus et al 2015 J. Phys.: Conf. Ser. 608 012052 Kai Lukas Unger et al 2023 J. Phys.: Conf. Ser. 2438 012056 F. Meggendorfer, DPG Conference 2021 Thesis: S. Skambraks, S. Pohl

1 ap. Dg > 1t

• Input the 2D tracker and stereo TS info: Crossing angle, drift time, ϕ relative to 2D Track .


Karlsruher Institut für Technologie

• Obtain z_0 and θ .

ML tau trigger

- Global trigger receives the cluster information from ECLTRG.
 - Input the position and energy information of clusters to a Neural Network, and determine if it is a tau event or not.
 - A kind of topological application.
 - Based on hls4ml.
 - Validated and will be implemented in 2024 runs.

47

