Versatile FPGA-based DAQ system using synchronous Aurora links and AXI infrastructure

Grzegorz Korcyl Department of Information Technologies Jagiellonian University 2024

The key concepts

- Primary application PET imaging
- Scalable, hierarchical architecture
 - Small/medium scale
 - Master, Concentrators, Endpoints model
- Continuous/triggerless readout
 - Triggering readout at fixed rate
- Single link communication
 - Synchronization, data transport, control and monitoring
- Easy to reuse and to expand firmware
 - Standardized protocols and interfaces

System interconnections

- AXI Master Slave model at the core
 - In-chip logic components connectivity
 - Device-device communication
 - Addressing scheme
- AXI Stream natural for Aurora
- Aurora with AXI Chip2Chip as a bridge for device-device comm.
 - Transfer between Memory-Mapped and Stream domains and back
- Quick system setup, efficient prototyping

System Architecture

- System Master
 - Source of the common clock
 - Synchronous Aurora Master links in TX channels
- Endpoint
 - Single Aurora Slave interface
 - Recovered clock and synchronization pulse extraction
- Data Concentrator
 - Endpoint
 - A number of Aurora Master links
 - Synchronized to the recovered clock

Aurora Sync

- Aurora 8b/10b as a core component
- Modifications to generic GT:
 - RX on Aurora Slave
 - RX path on RX recovered clock
 - No elastic buffer
 - Custom 8b/10b decoder
 - Custom comma alignment with manual RX slide
 - TX on Aurora Master
 - TX Phase Interpolator for alignment to RX rec. clock
 - PICXO as DPLL to control the TX PI
 - No external jitter cleaners or clock fan-outs
 - No common MGTREF clock between quads
 - Individual, local MGTREF clocks
- Adjustable link speed
- Reference clock distribution
- Unused bit of Aurora stream 32b data word
 - Used for injected serial transmission
 - First bit as a synchronization pulse
 - Following bits decoded as sync words (e.g. readout counter, etc.)

https://docs.amd.com/v/u/en-US/xapp589-VCXO

UG482_c3_01_11281

Aurora Sync

- Stable jitter of rec. clock in distributed system
 - Varies between hardware components
 - Jitter increases with number of hops
- Fixed time offsets between Endpoints
 - Repetitive over reboots
 - Fixed for a set of bitfiles
 - Requires single calibration run to compensate

Measured with scope probes on LEDs Actual, intrinsic jitter expected to be lower

Data transport

- Endpoints continuously buffer measurement data in FIFOs
- Endpoints transfer data to Parent upon reception of SYNC pulse
 - Data Mover converts AXIS to AXIMM
 - Non-synchronous channel
- Parent (Concentrator)
 - Converts AXIMM to AXIS and stores payload in FIFO
 - Aggregates data from all active outgoing links (Data Funnel – round-robin)
 - Timing must be balanced
 - Adds headers and creates AXIS
 - Aggregated packet can be forwarded further to Concentrator Parent
 - Or exported out of the system e.g. Ethernet
- Multiple regions to implement data preprocessing
 - Single Endpoint data or multiple combined
 - AXI interfaces make it easy to implement algorithmics with HLS

Hardware platforms

ZCU102 dev. board as

- System Master
- Data Concentrator

VU108 dev. board as a Data Concentrator

PANDA uTCA Data Concentrator (P. Marciniewski) XCKU15P 70x GT channels over 5x Firefly

MTAB as TDC Endpoint (M. Kajetanowicz) XC7A200 65 ch. High-res TDC

TB-PET as

- multi-TDC Endpoint
- Data Concentrator
- (M. Kajetanowicz)
- 6x XC7A200 as 65 ch. High-res TDC 1x XC7A200 as Data Concentrator

SADC as ADC Endpoint (P. Marciniewski) 2x KC7K160 64 ch. 14b 80MSps ADC

AC701 and KC705 dev. boards as generic Endpoints

Example complete setup

- System Master
 - ZCU102
- 4x Data Concentrators •
 - VCU108
- 48x MTAB TDC
 - Artix7-200
 - 64 + ref channel Tap-Delay TDC
 - 200 MHZ coarse clock
 - Carry Logic blocks chain
 - 70 blocks required to cover 5ns
 - Clock region limitations –> folded chain of 42 blocks (168 taps)
 - Separate chains for leading/trailing edges ٠
 - Offline non-linearity correction ٠
 - Signal digitization with LVDS buffers
 - Aurora Sync Endpoint

where T_C=const>=total chain delay

tdc 0 5 raw minor 00 start

4000

3500

250

1500

100

O 350

ones

Board developed by Marcin Kajetanowicz

100

gap

200

Example complete setup

• PET scanner

- 24 modules of plastic scintillators with Hamamatsu SiPMs
- Total of 2496 TDC channels
- 20 kHz SYNC rate
- Stable operation in multiple data taking campaigns
 - Short measurements
 - Multi-week measurements

The University Hospital, Kraków 2024

CCB IFJ PAN, Kraków 2021

Banacha Hospital, Warszawa 2022

Summary

- A complete DAQ solution has been developed
 - Out-of-the-shelf or custom hardware components
 - Generic transceiver and clocking design
 - Easily extensible with new hardware
 - Ready to use components for Xilinx GT families
 - No external PLL required
 - Single data link
 - Complete set of firmware components for:
 - Synchronous channel
 - Measurement data transport
 - Complete set of software components for:
 - High-level, Python based control and monitoring
- System successfully deployed and evaluated with the J-PET scanner
 - Data transport infrastructure + the MTAB TDC platform as Endpoint
- System successfully migrated to custom components for the PANDA experiment
 - Custom Data Concentrator with 70 links + SADC platform as Endpoint
 - Evaluation required