
1

on FPGA for L1 trigger

1. Classification with boosted decision trees

2. Regression with deep boosted decision trees

3. Anomaly detection with decision tree-based autoencoder

Tae Min Hong

Workshop // on // Fast Realtime Systems // and // Realtime Machine Learning
April 9, 2024

https://indico.belle2.org/event/10782/contributions/75182/

Today

https://indico.belle2.org/event/10782/contributions/75182/

PITT-PACC-2311

Nanosecond anomaly detection with decision trees for high

energy physics and real-time application to exotic Higgs

decays

S.T. Rochea,b, Q. Bayerb, B.T. Carlsonb,c, W.C. Ouligianb,

P. Serhiayenkab, J. Stelzerb, and T.M. Hong�b

aSchool of Medicine, Saint Louis University
bDepartment of Physics and Astronomy, University of Pittsburgh

cDepartment of Physics and Engineering, Westmont College

April 11, 2023

Abstract

We present a novel implementation of the artificial intelligence autoencoding algorithm, used
as an ultrafast and ultrae�cient anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider at CERN are
considered, for which the autoencoder is trained using known physical processes of the Standard
Model. The design is then deployed in real-time trigger systems for anomaly detection of new
unknown physical processes, such as the detection of exotic Higgs decays, on events that fail
conventional threshold-based algorithms. The inference is made within a latency value of 25 ns,
the time between successive collisions at the Large Hadron Collider, at percent-level resource
usage. Our method o�ers anomaly detection at the lowest latency values for edge AI users with
tight resource constraints.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).

�Corresponding author, tmhong@pitt.edu

1

ar
X

iv
:2

30
4.

03
83

6v
1

 [h
ep

-e
x]

 7
 A

pr
 2

02
3

2022 JINST 17 P09039

P�������� �� IOP P��������� ��� S���� M�������

R�������: July 13, 2022
A�������: August 23, 2022

P��������: September 27, 2022

Nanosecond machine learning regression with deep

boosted decision trees in FPGA for high energy physics

B.T. Carlson,
0,1

Q. Bayer,
1

T.M. Hong
1,⇤

and S.T. Roche
1

0Department of Physics and Engineering, Westmont College,
955 La Paz Road, Santa Barbara, CA 93108, U.S.A.

1Department of Physics and Astronomy, University of Pittsburgh,
100 Allen Hall, 3941 O’Hara St., Pittsburgh, PA 15260, U.S.A.

E-mail: tmhong@pitt.edu

A�������: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package fwXmachina features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use di�erent numbers of bits for each input variable, which produces op-
timal physics results and ultrae�cient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (⇢miss

T) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.

K�������: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con-
cepts and systems (hardware and software)

A�X�� �P����: 2207.05602

⇤Corresponding author.

c� 2022 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/17/09/P09039

2

Papers

2021 JINST 16 P08016

P�������� �� IOP P��������� ��� S���� M�������

R�������: April 9, 2021
A�������: June 29, 2021

P��������: August 4, 2021

Nanosecond machine learning event classification with

boosted decision trees in FPGA for high energy physics

T.M. Hong,
⇤

B.T. Carlson, B.R. Eubanks, S.T. Racz, S.T. Roche, J. Stelzer and D.C. Stumpp

Department of Physics and Astronomy, University of Pittsburgh,
100 Allen Hall, 3941 O’Hara St., Pittsburgh, PA 15260, U.S.A.

E-mail: tmhong@pitt.edu

A�������: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called fwXmachina achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multÚet processes.

K�������: Digital electronic circuits; Trigger algorithms; Trigger concepts and systems (hardware
and software); Data reduction methods

A�X�� �P����: 2104.03408

⇤Corresponding author.

c� 2021 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/16/08/P08016

Carlson et al., JINST 17, P09039 (2022)
http://doi.org/10.1088/1748-0221/17/09/P09039

Hong et al., JINST 16, P08016 (2021)
http://doi.org/10.1088/1748-0221/16/08/P08016

Roche et al., accepted for publication
https://arxiv.org/abs/2304.03836

Classification Regression + deep Anomaly detection

http://doi.org/10.1088/1748-0221/17/09/P09039
http://doi.org/10.1088/1748-0221/16/08/P08016
https://arxiv.org/abs/2304.03836

 TM HongOutline

3

Introduction
• Autoencoders for anomaly detection
• Machine learning at L1

Decision tree autoencoder
• Novel training method

Firmware design
• Novel latent-spaceless design for FPGA

Physics & FPGA results
• Exotic decay of Higgs to pseudoscalars to 2e 2μ
• “LHC anomaly detection” dataset

Autoencoder
• Typically constructed using

neural networks
• Challenge to implement in pure

digital logic on FPGA
• NN example shown on right

Decision tree?
• Used in our work
• Has certain advantages:

technical (no multiplication) &
philosophical (interpretable)

 TM HongPrior work

4

ARTICLES NATURE MACHINE INTELLIGENCEARTICLES NATURE MACHINE INTELLIGENCE

Extended Data Fig. 1 | Network architectures. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models
are derived introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

Govorkova et al., Autoencoders on field-programmable gate arrays for
real-time, unsupervised new physics detection at 40 MHz at the Large
Hadron Collider, Nature Mach. Intell. 4 (2022) 154–161
https://doi.org/10.1038/s42256-022-00441-3

https://doi.org/10.1038/s42256-022-00441-3

 TM Hong

Can’t analyze data that’s not saved
• L1 triggers at ATLAS & CMS use custom

electronics such as FPGAs to discard 99.8%
• Implementing anomaly detection at the L1 is

challenging and possible (this talk)

Anomaly detection in HEP

5Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

Model-agnostic detection of BSM signals
• Many anomaly detection methods have been devised and

tested on a variety of different HEP problems
[https://iml-wg.github.io/HEPML-LivingReview]

• Anomaly detection in ATLAS analysis
[ATLAS-CONF-2022-045]

http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://iml-wg.github.io/HEPML-LivingReview
https://cds.cern.ch/record/2816323

6

Decision trees

2018 JINST 13 P07027

3. resource usage, expressed as the following FPGA resource categories: onboard FPGA
memory (BRAM), digital signal processing (arithmetic) blocks (DSPs), and registers and
programmable logic (flip-flops, or FFs, and lookup tables, or LUTs).

The hls4ml tool has a number of configurable parameters which can help the user explore and
customize the space of latency, initiation interval, and resource usage tradeo�s for their application.
Because every application is di�erent, the goal of the hls4ml package is to empower the user to
perform this optimization through automated neural network translation and FPGA design iteration.
In practice, the time required to perform hls4ml translation of a neural netowrk is much shorter
(minutes to hours) than a designing a specific neural network architecture for an FPGA, and may be
used to rapidly prototype machine learning algorithms without dedicated engineering support for
the FPGA implementation. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus has the potential for the “time to physics”
to be greatly reduced.

We first introduce some terminology and concepts for the inference of deep, fully connected
neural networks. Consider the network illustrated in figure 2 with M layers, where each layer m

has Nm neurons. The input layer has N1 input neurons and the output layer has NM output neurons.
The vector of neuron output values at each layer are denoted by xm. For the m

th fully connected
layer (m > 1),

xm = gm
�
Wm,m�1xm�1 + bm

�
, (2.1)

where Wm,m�1 is the matrix of weights between layers m � 1 and m, bm are the bias values, and gm
is the activation function for layer m. The size of matrix Wm,m�1 is Nm ⇥ Nm�1 and thus the number
of multiplications required to compute the neuron values of layer m is implicitly also Nm ⇥ Nm�1.

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2. A cartoon of a deep, fully connected neural network illustrating the description conventions used
in the text.

– 5 –

• Neural Network
Popular Been around HEP since the 80s1

Depth Challenging, so ~3 on FPGA2

Score y = Θ(𝕄 ⋅ x + b)
Activation Multiplication

• Decision Tree
Popular Discovered the Higgs!3
Depth Challenging, so 4 to 8 on FPGA4,5,6

Score y = Θ(x < threshold)

7

ML on FPGA
NN vs. DT

start

O1O0

O01O00

Root node

Depth i

Depth ii

Conventional tree structure

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

Binning is sequential

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

fa
ls

e

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

Binning in each variable is
independent of other variables

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

qi:

qii:

2d plane: xa vs. xb

2d plane: xa vs. xb
• FWX Decision Tree

Physics Comparable results vs. NN on FPGA
Float / fixed Bit integer → bit shifts → efficient
Optimized Parallelize → one step→ low latency

ComparisonStep fn

1 Denby, Comp. Phys. Comm. 49-3, 429 (1988)
2 Duarte et al., J. Instrum. 13, P07027 (2018)
3 CMS Collaboration, Phys. Lett. B 716, 31 (2012)
4 Summers et al., J. Instrum 15, P02056 (2020)
5 Hong et al., J. Instrum. 16, P08016 (2021)
6 Carlson et al., J. Instrum. 17, P09039 (2022)

https://doi.org/10.1016/0010-4655(88)90004-5
https://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1088/1748-0221/15/05/p05026
https://dx.doi.org/10.1088/1748-0221/16/08/P08016
https://doi.org/10.1088/1748-0221/17/09/P09039

8

Design v1: Parallelize cuts
2 variable example

Standard
decision tree

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

ci

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

qi:

qii:

2d plane: xa vs. xb
• General

Training Use TMVA or equivalent
Design Threshold comparisons
Challenge Evaluate layers sequentially

FWX design
v1

• FWXv1
Key design Evaluate cuts in parallel
Benefit Each cut is indpd’t

→ Bin search on a grid
→ Bit shift to speed-up

Limitations Does not scale well w/
tree depth & # variables

Follow-up Led to v2 design

ci

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

qi:

qii:

2d plane: xa vs. xb

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

Hong et al., JINST 16, P08016 (2021)

http://doi.org/10.1088/1748-0221/16/08/P08016

 TM HongRegression

9

Look-up table
• Toy problem in 1-d
• Train / test on f(x) = sin(x) + Gaussian(x)
• For sample of x: y = f(x) in 16 bits

start

O1O0

O01O00

Root node

Depth i

Depth ii

Conventional tree structure

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

Binning is sequential

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

fa
ls

e

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

Binning in each variable is
independent of other variables

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

qi:

qii:

2d plane: xa vs. xb

2d plane: xa vs. xb

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

Ntree = 1 Ntree = 10

Ndepth = 2

Ndepth = 4

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

0 2 4 6 8 10

30000−

20000−

10000−

0

10000

20000

30000

(x,y) =  
(Ntree, Ndepth) Ntree = 1 10 25 100 400

2

4

8

10

11

Design v2: Parallelize terminal bins
Go deeper from 4 → 8

Standard
decision tree

FWX design
v2

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.

0 2 4 6 8 10
D, max. tree depth

0

100

200

300

 >
 p

e
r

tr
e
e

b
in

<
 N

0

10

20

 (
%

)
1
0

P
e
rc

e
n
ta

g
e
 o

f
2

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.

8

• FWXv2
Key design Evaluate decision paths
Benefit Softer scaling vs 2D

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.

0 2 4 6 8 10
D, max. tree depth

0

100

200

300

 >
 p

e
r

tr
e
e

b
in

<
 N

0

10

20

 (
%

)
1
0

P
e
rc

e
n
ta

g
e
 o

f
2

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.

8

• Improve FWXv1
Challenge Does not scale well w/

tree depth & # variables
Cut redundancy 2D

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.

0 2 4 6 8 10
D, max. tree depth

0

100

200

300

 >
 p

e
r

tr
e
e

b
in

<
 N

0

10

20

 (
%

)
1
0

P
e
rc

e
n
ta

g
e
 o

f
2

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.

8

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.

0 2 4 6 8 10
D, max. tree depth

0

100

200

300

 >
 p

e
r

tr
e
e

b
in

<
 N

0

10

20

 (
%

)
1
0

P
e
rc

e
n
ta

g
e
 o

f
2

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.

8

Nanosecond ML regression with deep BDT in FPGA for HEP

0 2 4 6 8 10
D, max. tree depth

0

2000

4000

6000

8000

A
ct

u
a
l L

U
T

 u
sa

g
e

0

0.1

0.2

0.3

0.4

0.5

0.6

L
U

T
 u

sa
g
e
 (

%
 o

f
xc

vu
9
p
)

tree N
 1
 2
 4
 5
 10
 20
 30
 40

0 2 4 6 8 10
D, max. tree depth

0

1000

2000

3000

4000

5000

6000

A
ct

u
a
l F

F
 u

sa
g
e

0

0.1

0.2

F
F

 u
sa

g
e
 (

%
 o

f
xc

vu
9
p
)

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 11: Actual LUT usage (left) and actual FF usage (right) as a function of the maximum depth. Absolute
usage is shown on the left axis and percentage of our FPGA resources is shown on the right axis, both using
the setup in table 3.

0 2 4 6 8 10
D, max. tree depth

0

2

4

6

8

10

A
ct

u
a
l D

S
P

 u
sa

g
e

0

0.05

0.1

D
S

P
 u

sa
g
e
 (

%
 o

f
xc

vu
9
p
)

tree N
 1
 2
 4
 5
 10
 20
 30
 40

0 2 4 6 8 10
D, max. tree depth

0

5

10

15

A
ct

u
a
l B

R
A

M
 u

sa
g
e

0

0.1

0.2

0.3

B
R

A
M

 u
sa

g
e
 (

%
 o

f
xc

vu
9
p
)

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 12: Actual DSP usage (left) and actual BRAM usage (right) as a function of the maximum depth.
Absolute usage is shown on the left axis and percentage of our FPGA resources is shown on the right axis,
both using the setup in table 3. No DSP usage is seen.

19

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.

0 2 4 6 8 10
D, max. tree depth

0

100

200

300

 >
 p

e
r

tr
e

e
b
in

<
 N

0

10

20

 (
%

)
1
0

P
e

rc
e

n
ta

g
e

 o
f

2

tree N
 1
 2
 4
 5
 10
 20
 30
 40

Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.

8

Carlson et al., JINST 17, P09039 (2022)

http://doi.org/10.1088/1748-0221/17/09/P09039

12

Autoencoder
Tree-based

 TM HongAutoencoder intro

13

784 variables (8-bit)

Example: handwritten numbers
• Teach it about the number 4

Image Pixel 1 Pixel 2 ... Pixel
300 ... Pixel

783
Pixel
784

1 0 0 ... 240 ... 0 0

2 0 1 ... 255 ... 0 0

...

500k 0 0 ... 231 ... 0 0
...

Corresponding data set

=

Image 1
2
3

500k

Details
• Each pixel in the data set are unrelated to each other

Details
• Input-output distance is relatively small = good compression

 TM HongAutoencoder intro

14

784 variables (8-bit)

Input Output looks good!

Example: handwritten numbers
• Teach it 0, 1, 2, 3, 4 with a sample

784 variables (8-bit)

C
om

pr
es

s

D
ec

om
pr

es
s

300x compression

1 variable (20 bit)

Details
• Input-output distance is relatively large = bad compression

 TM HongAutoencoder intro

15

784 variables (8-bit)

Input Output looks bad!

Example: handwritten numbers
• Teach it 0, 1, 2, 3, 4 with a sample (doesn’t know about 9!)

784 variables (8-bit)

C
om

pr
es

s

D
ec

om
pr

es
s

300x compression

1 variable (20 bit)

 TM HongDecision tree autoencoders

16

X

Y

Training philosophy (novel method described in paper)
• Place small “bins” around locations of high event density
• Example

• 2d toy dataset, say x = pT and y = eta for some SM sample

 TM HongDecision tree autoencoders

17

X

Y

Training philosophy (novel method described in paper)
• Place small “bins” around locations of high event density
• Choose variable by sampling the max of the distributions

 TM HongDecision tree autoencoders

18

X

Y

Training philosophy (novel method described in paper)
• Place small “bins” around locations of high event density
• Sample the variable for a cut, then repeat

 TM HongDecision tree autoencoders

19

X

Y

Training philosophy (novel method described in paper)
• Place small “bins” around locations of high event density
• Iteratively repeat for subsamples

 TM HongDecision tree autoencoders

20

X

Y

Latent space is bin number
• Encoding: Event → which bin it’s in

Decode by returning a “reconstruction point”
• Decoding: Bin → median of the training data in bin

 TM HongDecision tree autoencoders

21

How does this detect anomalies?
• Define: Distance between input – output = anomaly score

X

Y

 TM HongDecision tree autoencoders

22

How does this detect anomalies?
• Define: Distance between input – output = anomaly score

X

Y

• Non-anomaly
• Input is similar to training data
• Will likely land in a small bin close

to reconstruction point

 TM HongDecision tree autoencoders

23

How does this detect anomalies?
• Define: Distance between input – output = anomaly score

X

Y

• Non-anomaly
• Input is similar to training data
• Will likely land in a small bin close

to the reconstruction point

• Anomaly
• Input is not similar to training data
• Will likely land in a large bin

far from the reconstruction point

 TM HongToy dataset (2 input variables)

24

Nanosecond anomaly detection with decision trees & real-time application to exotic Higgs decays

0 100 200
0

100

200

2 var. toy dataset

0 50 100 150
 ∆Anomaly score

0

0.1

0.2

0.3

E
ve

n
ts

 (
u
n
it

n
o
rm

)

Max. depth

D=4

D=6

D=8

=13
bins

 D=4, N =57
bins

 D=6, N =169
bins

 D=8, N

Figure A.3: Toy dataset and ML training with varying maximum depth ⇡. The top-left plot shows training
sample where each data point is represented by a 2d coordinate. The top-right plot shows input-output
distance � for various ⇡. The anomaly score distribution shows RMS shrinking with ⇡ when evaluated on a
sample similar to the training sample. The bottom rows of plots shows the result of the ML training. In each
partition, a dot (•) indicates the estimate x̂, the location of the median in each dimension of the data in that
bin, corresponding to the bin that x resides in. With the median points one can visualize the refinement of the
reconstruction of the original dataset with increasing ⇡.

18

Nanosecond anomaly detection with decision trees & real-time application to exotic Higgs decays

0 100 200
0

100

200

2 var. toy dataset

0 50 100 150
 ∆Anomaly score

0

0.1

0.2

0.3

E
ve

n
ts

 (
u
n
it

n
o
rm

)

Max. depth

D=4

D=6

D=8

=13
bins

 D=4, N =57
bins

 D=6, N =169
bins

 D=8, N

Figure A.3: Toy dataset and ML training with varying maximum depth ⇡. The top-left plot shows training
sample where each data point is represented by a 2d coordinate. The top-right plot shows input-output
distance � for various ⇡. The anomaly score distribution shows RMS shrinking with ⇡ when evaluated on a
sample similar to the training sample. The bottom rows of plots shows the result of the ML training. In each
partition, a dot (•) indicates the estimate x̂, the location of the median in each dimension of the data in that
bin, corresponding to the bin that x resides in. With the median points one can visualize the refinement of the
reconstruction of the original dataset with increasing ⇡.

18

more bins

Anomaly score
• Feed back in the training sample

• Should be near 0, like ETmiss resolution

Nanosecond anomaly detection with decision trees & real-time application to exotic Higgs decays

0 100 200
0

100

200

2 var. toy dataset

0 50 100 150
 ∆Anomaly score

0

0.1

0.2

0.3

E
ve

n
ts

 (
u
n
it

n
o
rm

)

Max. depth

D=4

D=6

D=8

=13
bins

 D=4, N =57
bins

 D=6, N =169
bins

 D=8, N

Figure A.3: Toy dataset and ML training with varying maximum depth ⇡. The top-left plot shows training
sample where each data point is represented by a 2d coordinate. The top-right plot shows input-output
distance � for various ⇡. The anomaly score distribution shows RMS shrinking with ⇡ when evaluated on a
sample similar to the training sample. The bottom rows of plots shows the result of the ML training. In each
partition, a dot (•) indicates the estimate x̂, the location of the median in each dimension of the data in that
bin, corresponding to the bin that x resides in. With the median points one can visualize the refinement of the
reconstruction of the original dataset with increasing ⇡.

18

Nanosecond anomaly detection with decision trees & real-time application to exotic Higgs decays

0 100 200
0

100

200

2 var. toy dataset

0 50 100 150
 ∆Anomaly score

0

0.1

0.2

0.3

E
ve

n
ts

 (
u
n
it

n
o
rm

)

Max. depth

D=4

D=6

D=8

=13
bins

 D=4, N =57
bins

 D=6, N =169
bins

 D=8, N

Figure A.3: Toy dataset and ML training with varying maximum depth ⇡. The top-left plot shows training
sample where each data point is represented by a 2d coordinate. The top-right plot shows input-output
distance � for various ⇡. The anomaly score distribution shows RMS shrinking with ⇡ when evaluated on a
sample similar to the training sample. The bottom rows of plots shows the result of the ML training. In each
partition, a dot (•) indicates the estimate x̂, the location of the median in each dimension of the data in that
bin, corresponding to the bin that x resides in. With the median points one can visualize the refinement of the
reconstruction of the original dataset with increasing ⇡.

18

Closer to 0
with more bins

Bin x y

1

2

3 5 4

...

 TM HongFWXMACHINA

25

Latent spaceless implementation
• Closer look at what it means to encode

Incoming
heart

Encode:
return bin 3

3

Decode bin 3:
return (5,4)

Incoming
heart

Encode is Decode:
return (5,4)

• Skip the encoding & decoding

(5,4)

DDTE-ad1

Distance
Processor

Sum

Δ = Σk Δk

x x̂0

x̂1

x̂K-1

x

x

Encoder DecoderEncoded data

Shown conceptually as
actual encode-decode
occur simultaneously.

Intermediate
output

Input data

ΔK-1

Δ1

Distance
Fn., Δ0

x

DDTE-adK-1

Metric

Find bin
location

Find bin
estimate

Bin
index

Deep Decision Tree Engine,
anomaly detector version

DDTE-ad0

x

...

for k = 0 .. K-1 trees

 TM HongFWXMACHINA

26

Details
• Parallel computing

• TREE ENGINES eval. in parallel
• All combinatoric logic, so no clocking

between steps = fast
• Mostly comparisons = fast
• No multiplication = fast

• Technical info in backup &
[2304.03836]

Logic flow
• Left-to-right data flow (see right)
• Realized that we can bypass the latent space!

• Encoding = Decoding

Data Data
in

https://arxiv.org/abs/2304.03836

demux

One Hot Decision Path (OHDP)

and
x0

x1

xV-1

>
αlow

<
αhigh

x0

x0

>
βlow

<
βhigh

x1

x1

>
γlow

<
γhigh

xV-1

xV-1

...

Not
explicitly used,
may be used

indirectly

LUT / BRAM

ODPx

for v = 0 .. V-1 input variables

One Hot Decision Path
OHDP0

x

...

x

x

Deep Decision Tree Engine (DDTE)

OHDP1

OHDPB-1

x̂

for b = 0 .. B-1 terminal bins

x

O0

O1

OB-1

 in0

 in1

 inB-1

...

out

LUT
active input array
 → output array

Part of the
encoding design

bus tap

Part of the
decoding design

Data Data
in

DDTE-ad1

Distance
Processor

Sum

Δ = Σk Δk

x x̂0

x̂1

x̂K-1

x

x

Encoder DecoderEncoded data

Shown conceptually as
actual encode-decode
occur simultaneously.

Intermediate
output

Input data

ΔK-1

Δ1

Distance
Fn., Δ0

x

DDTE-adK-1

Metric

Find bin
location

Find bin
estimate

Bin
index

Deep Decision Tree Engine,
anomaly detector version

DDTE-ad0

x

...

for k = 0 .. K-1 trees

 TM HongSM 2e 2μ vs. ?

28

Veto events with lepton pT > 23 GeV
• Consider only events that won’t be already captured by L1 trigger

Proof of concept problem
• Background: we generate all SM with 2e 2μ (predominantly ZZ*)
• Signal: ggF H a1 a2 e+ e- μ+ μ- (different mH & ma)

Parameter Value
Clock speed 320 MHz

Latency 8 ticks (25 ns)
Interval 1 tick (3.125 ns)

FF 10k (0.4 %)
LUT 31k (2.6%)
DSP 3 (0.04%)

BRAM 0

 TM HongSM 2e 2μ vs. ?

29

Proof of concept problem
• Design

• 40 decision trees with maximum depth of 5
• 3 variables: mee, mμμ, m4l

• Physics results (see figure)
• Great separation for H125
• May need a “window selection” for H70

• FPGA results (see table)
• Latency within 25 ns = 1 BC
• Percent-level (or smaller) resource usage
• No multiplications!

Distribution

 TM HongCompare with hls4ml

30

LHC anomaly detection ds
[Sci Data 9, 118]

• Background
• W → lv, Z → ll, multijet, ttbar

• Signal
• 4 BSM scenarios

• Input variables
• 54 variables
• pT, η, φ of the 4 leading μ, 4 leading

e, 10 leading jets, MET
• See distributions on the right

• Sample selection
• Require ≥1 lepton w/ pT > 23 GeV

• (L1 will already save these...)

https://doi.org/10.1038/s41597-022-01187-8
https://doi.org/10.1038/s41597-022-01187-8

hls4ml fwX (this)
Clock speed 200 MHz 200 MHz

Latency 80 ns 30 ns
Interval 5 ns 5 ns

FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%

BRAM 0.3% 0

 TM HongCross-check with public data

31

Works well
• Physics (plots)
• FPGA (table)

Comparison
• Hls4ml NN-AE

[Nature Mach. Intell. 4 (2022) 154–161]
• Physics: comparable AUC
• FPGA results

Distribution ROC curve

https://doi.org/10.1038/s42256-022-00441-3

 TM HongWhat I presented

32

Decision tree-based autoencoder
• New training method by sampling, it’s density estimation
• More transparent (to me) than neural network-based designs
• Can do problems in high energy physics (3 - 50 variables)
• Competitive performance vs. hls4ml

Efficient implementation
• Latent space-less design where encoding = decoding
• Performance on Xilinx Virtex Ultrascale+ VU9P
‣ O(1)% level resource usage
‣ Fast at 30 ns latency
‣ Try it yourself with the provided testbench & IP available online

Then what
• What are we going to do with the events that we save?
‣ Everyone is saving rare events that are uncategorized. Who’s going to categorize

them? CMS recently showed an event display of the most anomalous event. Will
we go through one-by-one to try to guess at the physics?

‣ There are ideas, but more needed

What about benchmarks?
• By construction, it’s supposed to pick up events that we don’t know

about. But to benchmark it, we choose models that we know about.
Is this a contradiction? How do we avoid it? Who gets to choose?

• How much trigger bandwidth do we devote to it if we don’t know
what may be in it?

 TM HongWhat I think about

33

34

Backup slides

x

y

Neural networks basics
From Bruce Denby, Tutorial on Neural Network Applications in High
Energy Physics: A 1992 Perspective, FERMILAB-CONF-92 / 121-E

35

x

N
um

be
r o

f e
ve

nt
s

x

y

1

0

xα

f(x)

Θ(xα – x) Θ(y – f(x))

= Θ(y – (mx + b)) substitute
= Θ(c1 y + c2 x + b) multiply by c1 & define c2
= Θ(c1 x1 + c2 x2 + b) generalized notation
= Θ(c • x + b) vector notation

0 1

Step function for 1d Step function for 2d Curved step fn? for 2d

1

0

0

Neural networks

 Step functions divide samples given a desired true / false positive rates

36

x

y

x

y

0

1
1

0

fα

fβ

x1

x2

fα

fβ

x1

x2

1

1
2

1

1
2

3

2

2

Θ(cα1 x1 + cα2 x2 + bα) Θ(cβ1 x1 + cβ2 x2 + bβ)
x

y

10

fγ

Θ(cγ1 x1 + cγ2 x2 + bγ)

Θ(cα1 x1 + cα2 x2 + bα) +
Θ(cβ1 x1 + cβ2 x2 + bβ)

Θ(cα1 x1 + cα2 x2 + bα) +
Θ(cβ1 x1 + cβ2 x2 + bβ) +
Θ(cγ1 x1 + cγ2 x2 + bγ)

fα

fβ

fγ

Sum of step functions can approximate the desired contour

37

subtract 2 threshold

x1

x2

1

1
2

3

2

2

Θ(cα • x + bα) +
Θ(cβ • x + bβ) +
Θ(cγ • x + bγ)

x1

x2

-1

-1
0

1

0

0

Θ(cα • x + bα) +
Θ(cβ • x + bβ) +
Θ(cγ • x + bγ) – 2

x1

x2

0

0
0

1

0

0

Θ(Θ(cα • x + bα) +
Θ(cβ • x + bβ) +
Θ(cγ • x + bγ) – 2)

The contour is converted to the final step function

Step function for
2-dim inputs

Activation function
Fuzzy boundary using a function

38

2-dim inputs

x

N
um

be
r o

f e
ve

nt
s

Θ(xα – x)

1-dim input

x

N
um

be
r o

f e
ve

nt
s

Φ(xα – x; xmax)

xα xmax

Output score

xα
O

0 1

N
um

be
r o

f e
ve

nt
s

O
0 1

N
um

be
r o

f e
ve

nt
s

 Activation fn gives users a handle to control true / false positive rates

c2α
c2β

c1

Θ(x1 – c1) • Θ(x2 – c2α) +
Θ(c1 – x1) • Θ(x2 – c2β)

Decision tree basics
And how it achieves the same result as NN

39

x1

x2

1

0

xα

Θ(xα – x)

0 1

Step function for 1d Step function for 2d

x

N
um

be
r o

f e
ve

nt
s

Flip book

40
 Unit gaussians of two variables

One decision tree

41

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth1

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth1

x >
value

sig bkg

Binary classification

One decision tree

42

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth2

x >
value

y >
value

s b

y >
value

s b

Binary classification

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth1

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth2One decision tree

43

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth3

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth3

Binary classification

One decision tree

44

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth4

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth4

Binary classification

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth3

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth3

One decision tree

45

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth8

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth8

Draws diagonal

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth4

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth4

Depth 2

46

vary trees

Depth 2

47

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth2

vary

x >
value

y >
value

s b

y >
value

s b

Depth 2

48

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth2

Depth 2

49

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree4 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree4 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth2

Depth 2

50

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree8 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree8 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree4 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree4 depth2

Depth 2

51

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree16 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree16 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree8 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree8 depth2

Depth 2

52

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree32 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree32 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree16 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree16 depth2

Depth 2

53

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree64 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree64 depth2

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree32 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree32 depth2

Depth 2

54

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree128 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree128 depth2

becomes very blurry

vary

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree64 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree64 depth2

Put it together on one slide

55
Sweet spot depends on the physics problem

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth1

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth1

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree4 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree4 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree8 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree8 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree16 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree16 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree8 depth2

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree8 depth2

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth4

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth4

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth4

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth4

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree1 depth8

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree1 depth8

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth8

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth8

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

tree2 depth16

5− 4− 3− 2− 1− 0 1 2 3 4 55−

4−

3−

2−

1−

0

1

2

3

4

5

tree2 depth16

1 2 4 8 16 32

1

2

4

8

16

Tree
D

ep
th

Forest of decision trees
Fuzzy boundary by averaging step functions

56

Neural network 1d

x

N
um

be
r o

f e
ve

nt
s

Θ(xα – x)

x

N
um

be
r o

f e
ve

nt
s

Φ(xα – x; xmax)

xα xmax

xα

Boosted decision tree 1d

x

N
um

be
r o

f e
ve

nt
s

Θ(xα – x)

xα

x

N
um

be
r o

f e
ve

nt
s

Φ(xα1 – x; xmax1) +
Φ(xα2 – x; xmax2) +

Φ(xαN – x; xmaxN)
…

Forest of decision trees provides the gradient

2-dim inputs

Activation function
Fuzzy boundary using a function

57

O
0 1

N
um

be
r o

f e
ve

nt
s

Output score

O
0 1

N
um

be
r o

f e
ve

nt
s

Different approach, but same result

Projection

NN

BDT

