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Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics
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AsstracT: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXMacHINA achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.
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and software); Data reduction methods
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Nanosecond machine learning regression with deep
boosted decision trees in FPGA for high energy physics
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AssTrACT: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FwXmMacHINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (E.‘ll““) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.

Keyworps: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con-
cepts and systems (hardware and software)
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Nanosecond anomaly detection with decision trees for high
energy physics and real-time application to exotic Higgs
decays
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P. Serhiayenka®, J. Stelzer®, and T.M. Hong*®

4School of Medicine, Saint Louis University
"Department of Physics and Astronomy, University of Pittsburgh
‘Department of Physics and Engineering, Westmont College

April 11, 2023

Abstract

‘We present a novel implementation of the artificial intelligence autoencoding algorithm, used
as an ultrafast and ultraefficient anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider at CERN are
considered, for which the autoencoder is trained using known physical processes of the Standard
Model. The design is then deployed in real-time trigger systems for anomaly detection of new
unknown physical processes, such as the detection of exotic Higgs decays, on events that fail
conventional threshold-based algorithms. The inference is made within a latency value of 25 ns,
the time between successive collisions at the Large Hadron Collider, at percent-level resource
usage. Our method offers anomaly detection at the lowest latency values for edge Al users with
tight resource constraints.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).
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Introduction

e Autoencoders for anomaly detection S ae
e Machine learning at L1 ‘
ow JYD M 55 M
Decision tree autoencoder wiihout model ¢ af |1

e Novel training method

Firmware design

e Novel latent-spaceless design for FPGA

Physics & FPGA results

e Exotic decay of Higgs to pseudoscalars to 2e 2
e ‘| HC anomaly detection” dataset
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Autoencoder
Govorkova et al., Autoencoders on field-programmable gate arrays for

° Ty p | C al |y C O n S.t r U Ct e d U S | n g real-time, unsupervised new physics detection at 40 MHz at the Large

Hadron Collider, Nature Mach. Intell. 4 (2022) 154—161
neura | N etwo r k S https://doi.org/10.1038/s42256-022-00441-3

ARTICLES NATURE MACHINE INTELLIGENCE

e Challenge to implement in pure
digital logic on FPGA

e NN example shown on right —,

Input € R57

Decision tree?

l | | . k + BN Dense € R Dense € R16 Latent space ER3 Dense €R16 Dense ER32  Dense € R57

Block 1: Block 2: Block 3: Block 4: Block 5:
Conv2d (16,(3,3)) Conv2d 1 (32,(3,1)) Dense (8) Conv2d 2 (32,(3,1)) Convad 3 (16,(3,1))
RelLU RelLU Dense 1 (64) RelLU ReLU

b AvPooling (3,1) AvPooling (3,1) RelLU UpSampling (3,1) UpSampling (3,1)
. I—l aS C e r‘tal n ad Va n ‘ta e S . Flatten (64) Reshape (2,1,32) ZeroPad (0,0),(1,1) ZeroPad (1,0),(0,0)
. Block @:

Qutput:
Input 19’_(3)(1 Conv2d 4 (1,(3,3))
ZeroPadding (1,0)

technical (no multiplication) & ONK
philosophical (interpretable) S

u>.\ \\)>u7:7/ il

[/] AT A

Extended Data Fig. 1| Network architectures. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models
are derived introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

y.
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Anomaly detection in HEP

TM Hong

Model-agnostic detection of BSM signals

e Many anomaly detection methods have been devised and

tested on a variety of ditterent HEP problems
[https://iml-wg.github.io/HEPML-LivingReview]

e Anomaly detection in ATLAS analysis
[ATLAS-CONF-2022-045]

Event Rate = — 60 TB/s
( 'Fm? '> (\\ ‘C ) Partial
1.5 M‘B 40 MHz
Buffer
Can't analyze data that's not saved L1tigger -
e L1 triggers at ATLAS & CMS use custom o
electronics such as FPGAs to discard 99.8% ‘ = _
—— Temporary
¢ Implementing anomaly detection at the L1 Is
challenging and possible (this talk) HLT trigger —4 1o EEs

——  Offline

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdagFullNew201 7.0(‘



http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://iml-wg.github.io/HEPML-LivingReview
https://cds.cern.ch/record/2816323

Decision trees




1 Denby, Comp. Phys. Comm. 49-3, 429 (1988) l

E—
FW 2Duarte et al., J. Instrum. 13, P07027 (2018)
. M L FPGA 3 CMS Collaboration, Phys. Lett. B 716, 31 (2012)
4Summers et al., J. Instrum 15, P02056 (2020)
MaCh I na On 5Hong et al., J. Instrum. 16, P0O8016 (2021)

el NN vs. DT 6 Carlson et al., J. Instrum. 17, P09039 (2022)

 Neural Network

Popular Been around HEP since the 80s!
Depth Challenging, so ~3 on FPGA?2
Score y=0M - x+ b)

= .

Activation  Multiplication

Decision Tree

Popular Discovered the Higgs!s
Depth Challenging, so 4 to 8 on FPGA#45.6
Score y = O(x < threshold)

= 4

Stepfn  Comparison

« FwWX Decision Tree

Physics Comparable results vs. NN on FPGA
Fleat-Hixed Bit integer — bit shifts — efficient
Optimized Parallelize — one step — low latency


https://doi.org/10.1016/0010-4655(88)90004-5
https://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1088/1748-0221/15/05/p05026
https://dx.doi.org/10.1088/1748-0221/16/08/P08016
https://doi.org/10.1088/1748-0221/17/09/P09039

X
Machina Design v1: Parallelize cuts
—) D variable example \

Standard FWX design

» (General
Training Use TMVA or equivalent

decision tree vi

Design Threshold comparisons
Challenge Evaluate layers sequentially

%

c FWXVT >

Key design Evaluate cuts in parallel Xo

Benefit Each cut is indpd'’t
— Bin search on a grid
— Bit shift to speed-up

Limitations Does not scale well w/
tree depth & # variables

Follow-up Led to v2 design

Hong et al., JINST 16, P08016 (2021)



http://doi.org/10.1088/1748-0221/16/08/P08016

Regression

Look-up table
 Toy problem in 1-d
- Train /teston  f(x)
« For sample of x: y

sin(x) + Gaussian(x)
f(x) in 16 bits

Ntree =1 Ntree =10
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X,y) =
Ntree, Ndepth

Ntree = 1
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Machina Design v2: Parallelize terminal bins
—) (G0 deeper from 4 — 8

° | m p rove FWXV 1 Standard FWX Sgsign

decision tree

Challenge Does not scale well w/
tree depth & # variables

Cut redundancy 2P

¢« FWXV2 a

Key design Evaluate decision paths

Benefit Softer scaling vs 2P
%8000 - ] ;35'
% XMachina _: 0.6 g Destination bin Decision path
- — ] §<)
2 6000 N,. = 0.5 o not(q;) and not(q;)
—_ - ] ] o .
O 104 i
g 4000~ =+ 4 ] (% D10 not(q;) and g;; and not(q;;;)
- 5 ] 03 7)) b11
- 10 ] :
20 .
2000 1023
I —0.1
O i = = i ) ) | .
0 2 4 6 8 10 Xg

D, max. tree depth

Carlson et al., JINST 17, P0O9039 (2022)
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Autoencoder

Tree-based




Autoencoder intro TM Hong

-xample: handwritten numbers

¢ [each It about the number 4

784 variables (8-bit) Corresponding data set
. age  Pixel | = Pixel 2 s I;)g(gl F;)S(jrl
500k

Detalls

e Fach pixel in the data set are unrelated to each other




Autoencoder intro TM Hong

-xample: handwritten numbers
e [each it 0, 1, 2, 3, 4 with a sample

/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)
o
%, N
N O
o - o)
o | 300x compression =
& Q
S g
o)
Input Output looks good!

Detalls

* |nput-output distance is relatively small = good compression

4



Autoencoder intro TM Hong

-xample: handwritten numbers

e feach it 0, 1, 2, 3, 4 with a sample (doesn’'t know about 9!)

/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)

o
%, N
N O
o - o)
o | 300x compression =
& Q
S g

o)

Input Output looks bad!

Detalls

¢ |nput-output distance is relatively large = bad compression

y.



Decision tree autoencoders TM Hong

Training philosophy (novel method described in paper)

e Place small “bins” around locations of high event density
e Example

e 2d toy dataset, say x = py and y = eta for some SM sample

O




Decision tree autoencoders TM Hong

Training philosophy (novel method described in paper)
e Place small “bins” around locations of high event density
e Choose variable by sampling the max of the distributions

°o°o°o°°
° oc"oq’o
o, o
o0 9% °
o ofo o 0°Y
0 Op




Decision tree autoencoders TM Hong

Training philosophy (novel method described in paper)
e Place small “bins” around locations of high event density
e Sample the variable for a cut, then repeat

b
£ods
qO
i
1
./




Decision tree autoencoders TM Hong

Training philosophy (novel method described in paper)
e Place small “bins” around locations of high event density
e |teratively repeat for subsamples

0O 00
--------f
00 O o

| R L




Decision tree autoencoders TM Hong

Latent space Is bin number
e Encoding: Event = which bin it's in

Decode by returning a “reconstruction point”
e Decoding: Bin = median of the training data in bin

- 2R




Decision tree autoencoders M Hong

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

A
Y I I
: iy
I P"'1
| 1] e |
[ I
| |
e e
______________ o.l

L ---—-—---L




Decision tree autoencoders TM Hong

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly
e |nput is similar to training data

o Will likely land in a small bin = close
to reconstruction point

Y

:

: i

1 s |

1 o 1 ©

C I

| |
R e rmmmd *
____________ ._ - ° .I

L ---—-—---L




Decision tree autoencoders TM Hong

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly e Anomaly
e |nput is similar to training data * |nput is not similar to training data
e Will likely land in a small bin > close o Will likely land in a large bin =
to the reconstruction point far from the reconstruction point

Y

_____..________I.L_:




D=8, N;ins=l1|69 -l
R B
» more bins
Anomaly score M Y
- - S99 Closer to 0 =
* Feed back In the training sample £ | with more bing | Max deptt
e Should be near 0, like Etmiss resolution %02 — D=4
[0) e D=6
>
i D=8
0.1
% 50 100750

Anomaly score A

y..



Latent spaceless implementation
e Closer look at what it means to encode

=k o
P
oo g<_SAA.
__________ o= ,9.52'30 \
-n-.-n-cn-gslo .
i N\

Incoming £|> £[> Encode: £[> Decode bin 3:
heart return bin 3 return (5,4)

e Skip the encoding & decoding

ig%‘v,
oi e o}?’-:u?gug-.-----
""""""" s’ Cw
-n-.-ﬂ-o‘l-gsf .
, N &
B O

Incoming > Encode is Decode:
heart return (5,4)




Logic flow

¢ | eft-to-right data flow (see right)
e Realized that we can bypass the latent space!

e Encoding = Decoding

X ) .
Distance
Processor
Data X %0 sum | —  Data
D ‘I: . | in Deep Decision Tree Engine,
e a S anomaly detector version _
l DDTE-ad, A= 2y

e Parallel computing

® [REE ENGINES eval. in parallel

DDTE-ad, |

|14 Distance
—1 Fn., Ao

e All combinatoric logic, so no clocking
between steps = fast

fork =0 .. K-1 trees

e Mostly comparisons = fast . E——
e No multiplication = fast A o

e Technical info in backup & t t t

Input data Encoder Encoded data Decoder Intermediate Metric
[2304.03836] output
: Shown conceptually as
actual encode-decode
occur simultaneously.

A


https://arxiv.org/abs/2304.03836

Distance
Processor
x | %o |
Deep Decision Tree Engine, Sum
anomaly detector version _
DDTE-ad, A= 2
DDTE-ad4
fork =0 .. K-1trees
One Hot Decision Path
OHDP, DDTE-ady 4

OHDP,

active input array
— output array

Qlow

X0 X0

Vv

and Opp

X4

Ohigh

demux X

V4

Xy-1

Blow

X4

Vv

Bhigh
X1 - |

v

forv=0 .. V-1 input variables

, Yiow
Xy/-1

V4

Yhigh
Xy-1

\/




SM 2e 2p vs. ? ™M Hong ({es)

Proof of concept problem

e Background: we generate all SM with 2e 2u (predominantly ZZ*)
e Signal: ggFH> a,;a, > e*e p*p (differentmy & m,)

. x10° . .
e | £ E o
o) [ S S 10°F Hz
c B c c E
. | . . C V4
o] 0 o] L
s 10 s s f
o | @ » 10*F Sig eeppt
c [ -y o
o [ o o 2
> L > > [
L 5k L L I
- 10° 3
o 2-
% 20 40 60 195
Leading lepton P, (GeV) Two-lepton mass m (GeV) Four-lepton mass meeml (GeV)
N §<103 . —
£ : cut F‘TVX £ a,; a, i Post-cut | £ p i Post-cut |
2 8r Machina_ o s | 0
s | S 10%F s 10*F
© [ Sig. H,, - a,. a S F S F N
E 6- ? a;: — eés % @ [ 2 Sig eepp
o [ a, — HUL = . £
o 4r SMpp — eeup D 10 b
- Simulation done w/ SM ee
2 [ MadGraphs5, SM pp
i Pythia8, Delphes
: 102 3 SM eeun
% 20) 40 60 0 50 100 0 50 100
Leading lepton P, (GeV) Two-lepton mass m (GeV) Four-lepton mass meeuu (GeV)

‘[
Veto events with lepton p; > 23 GeV

e Consider only events that won't be already captured by L1 trigger




SM 2e 2 vs. ? i Hong (i)

Proot of concept problem _ Distribution
x10
® DGS'gn g B Dataset:
Q - Roche et al.,
e 40 decision trees with maximum depth of 5 g 0T onaste (2029
. ;; N fwX AE V=3
e 3 variables: mg,, M, My, g : No.ofrees T-40
L
or Hizs
e Physics results (see figure) o o ,.)Hl
i o 3
o Great separation for H,s ; -I_L"'T"-z —atx10

_ . Anomaly score A
e May need a “window selection” for H,

Parameter Value

Clock speed 320 MHz
e FPGA results (see table) L atency 8 ticks (25 ns)
* Latency within 25 ns = 1 BC Interval 1 tick (3.125 ns)
e Percent-level (or smaller) resource usage FF 10k (0.4 %)
e No multiplications! LUT 31k (2.6%)
DSP 3 (0.04%)
BRAM 0

y.




Compare with his4ml ™M Hong ({es)

_HC anomaly detection ds ..} ] o
Sci Data 9, 118] 210 |\ s | R Mo
;é) ;E: [ h - t1
* Background MR T T
0 Mggl'opT 1000 -2 MEQI' 6 2

o W — v, Z — I, multijet, ttbar

-

o
ES
T

e Signal

e 4 BSM scenarios

—_
o
IS

Simulated events
=
w
% : )
Simulated events
3
I{)' N
o a
N a

Simulated events

=k
o
N
T
-
o
N
T

* [nput variables | i | I

ey pr ely ¢ e/yn
£l>-54variables | | | S S

e p1, N, ¢ of the 4 leading y, 4 leading
e, 10 leading jets, MET

e See distributions on the right
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e Sample selection
e Require >1 lepton w/ p > 23 GeV

Simulated events
o
[&)

Simulated events
o
F
Simulated events
)
T l";
i -
e )
HJ/

* (L1 will already save these...) AF=| kv
10" 102l ]
I I A 25 00 25 !‘
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Cross-check with public data M Hong

\Works wel Distribution ROC curve
. x107° . 1
e Physics (plots) : s pataset. &
.S Go'vorkova etal., E/ §
* FPGA (table) So2f o 8202 | 5 0
[ Method: §
g’ ZI;X :ft;r;/:fi-=3o 8 1 0‘2 DS: Govorkova et al.
i Max dlapth Ded = Method: fwX AE V=56
0.1 %) |:|h°—> T
1073 [JLQ— bt
. rih'> v
Comparison _ A4
O.l. AR e 10_4......|...|...|...
20 30 40 50 60 0 02 04 06 0.8 1
® H|S4m| NN-AE Anomaly score A Signal efficiency (TPR)

[Nature Mach. Intell. 4 (2022) 154-161]

* Physics: comparable AUC

e FPGA results > | Clock speed | 200 MHz 200 MHz
Latency 80 ns 30 ns <
Interval 5 ns 5 ns
FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%
BRAM 0.3% 0



https://doi.org/10.1038/s42256-022-00441-3

What | presented ™ Hong

Decision tree-based autoencoder

e New training method by sampling, it's density estimation

e More transparent (to me) than neural network-based designs
e Can do problems in high energy physics (3 - 50 variables)
e Competitive performance vs. hls4dml|

—fficient iImplementation

¢ | atent space-less design where encoding = decoding
e Performance on Xilinx Virtex Ultrascale+ VU9P

» O(1)% level resource usage
» Fast at 30 ns latency

» Try it yourself with the provided testbench & IP available online




What | think about T Hong

Then what

e \What are we going to do with the events that we save?

» Everyone is saving rare events that are uncategorized. Who's going to categorize
them”? CMS recently showed an event display of the most anomalous event. Will
we go through one-by-one to try to guess at the physics?

» There are ideas, but more needed

What about benchmarks?

e By construction, it's supposed to pick up events that we don't know
about. But to benchmark it, we choose models that we know about.
Is this a contradiction”? How do we avoid it? Who gets to choose”?

e How much trigger bandwidth do we devote to it if we don't know
what may be in it”
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Neural networks basics

From Bruce Denby, Tutorial on Neural Network Applications in High
Energy Physics: A 1992 Perspective, FERMILAB-CONF-92 / 121-E

Step function for 1d Step function for 2d  Curved step fn? for 2d

Xa y y

P ol 1

o 0
>

()]

5 C\ .
o

@]

£ 0
zZ

O(Xa — X) O(y —1(x))
=0O(y—(mx +Db)) substitute
=0O(c1y+cex+b) multiply by c1 & define co
= O(c1 X1 + C2X2 + b) generalized notation
=0O(c*x+Db) vector notation

ep functions divide samples given a desired true / false positive rates ’



fa

fg

X

> X
@(Ccﬂ X1 + Cc12 X2 + ba) e(CB1 X1 + CBZ X2 + bB)

> X
@(Cy1 X1 + Cy2 X2 + by)

fy

fp

> X1 X1

@(Cm X1 + Ca2 X2 + bq) + @(Ccn X1 + Ca2 X2 + bq) +
©(Cp1 X1 + Cp2 X2 + bp) O(Cp1 X1 + Cp2 X2 + bg) +

@(Cy1 X1 + Cy2 X2 + by)

of step functions can approximate the desired contour




O(Ca* X + ba) + O(Ca* X + ba) +
O(cp* X + bg) + O(cp* X + bp) +
@(Cy'x+by) ——lp @(Cy’x+by)—2 —i

subtract 2 threshold

Step function for
2-dim inputs

The contour is converted to the final step function




Activation function

Fuzzy boundary using a function

1-dim input 2-dim inputs Output score
() o
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5 o
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- X
Xa  Xmax O
0 1

Ivation fn gives users a handle to control true / false positive rates !



Decision tree basics

And how it achieves the same result as NN

Step function for 1d Step function for 2d
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Flip book




One decision tree

tree1 depth1
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sig bkg
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Binary classification




One decision tree -

tree1 depth2

Binary classification



One decision tree

tree1 depth3
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Binary classification




One decision tree

tree1 depth4
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Binary classification




One decision tree

tree1 depth8

Draws diagonal



Depth 2

vary trees




Depth 2

coocoo

vary
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tree1 depth2
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Depth 2

vary
tree2 depth2
5 — —1
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Depth 2

vary

tree4 depth2
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Depth 2

£ D £k & £k S

vary

|

tree8 depth2




Depth 2 _—

vary

|

tree16 depth2
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Depth 2 R

vary

l

tree32 depth2
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Depth 2
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vary

l

tree64 depth2

tree32 depth2
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Depth 2
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vary
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tree128 depth2

becomes very blurry

tree64 depth2




Put it together on one slide

Tree >

<+— Depth

tree1 depth1

tree2 depth1

tree1 depth2

tree2 depth2

treed depth2

tree8 depth2

tree16 depth2

tree8 depth2

tree1 depthd

tree2 depthd

tree1 depth8

tree2 depthg

tree2 depth16

Sweet spot depends on the physics problem




Forest of decision trees

Fuzzy boundary by averaging step functions
| Neural network 1d Bposted decision tree 1d

7p] N
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0 o)
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- >
Z pZd

CD(XOH — X, Xmax1) +
CD(XGZ — X, Xmax2) +

Number of events
Number of events

D(XaN — X; XmaxN)

@ Forest of decision trees provides the gradient




Activation function

Fuzzy boundary using a function

2-dim inputs Projection Output score

NN

Number of events

BDT

Number of events

Different approach, but same result




