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What’s FAIR?
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e Facility for Anti-proton and lon Research
A major new infrastructure for basic and applied research at GSI in Darmstadt, Germany

11 international partners
e Currently under construction - start of operations 2028
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What’s FAIR?

APPA laser  Complex accelerator facility for a
W /\ variety of physics

SIS100

* Including slowly extracted nuclear
beams for fixed-target
experiments

CRYRING * Full stripped heavy ionsup top =
12 GeV/c with intensities up to

1019 jons / s.
* Symmetric nuclei up to 14 GeV/c;
N protons up to 30 GeV/c.

CBM energy range:
P=35-12 GeV/c

msm  FAIR 2028

s Next steps

wemsm MSV completion

SNN =2.3-5.3GeV
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... some of which are really rare!




CBM in a Nutshell

Simulated Au+Au collision @ 12 AGeV (UrQMD)

 Measure charged pions, kaons, protons

* Measure electrons and muons

* Reconstruct weak decay topologies (hyperons, hyper-
nuclei, charm) A

* |n fixed-target collisions in the FAIR-SIS100 energy range S e

* In alarge acceptance Vi

e With high precision

e With high statistics

Punchline: Moderate collision energy, very high rates
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CBM as it will be

‘ _;";l“ il
S I

- mve AV

-
—

N wa

l/

P

=V
\MEGNET

AR NA

Al

;e €

- ;',i\ .

«n":

/

Tracking acceptance: 2° < Ouag < 25°
Free streaming readout
Front-end connectivity up to Rini= 10 MHz

STS+MVD /
Software-based event selection
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Detector Systems
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Silicon Tracking Time-of-Flight Ring-Imaging Transition-Radiation Muon System for
System for tracking of detector for Cherenkov detector Detector for identification of
charged particles identification of for identification of identification of muons

hadrons electrons electrons and
Micro-Vertex intermediate
Detector for tracking

measurement of
displaced vertices
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The High-Rate Frontier

Compilation by T. Galatyuk:
https://github.com/tgalatyuk/interaction_rate_facilities
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CBM design rate: up to 10 million collisions per second.
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Rate issues

 Radiation load on detectors and front-end electronics. Difficult, but not unsurmountable.
* Fast timing response of detectors and electronics

 HUGE data rate coming off the detectors

«  Raw datasize: ~100 kB / event (min. bias AW/

e 10’events/s £ 1 TB‘/s:aawLat'q rate from the detector.
* Archival rate: 100 GB/s surely possible; 1 TB/s on the high side

» Data volume, assuming 2 months of operation per year (5 x 10° s): Q

l 5 EB / year! ><

Data selection in real-time (by about 3 OOM) is base of the CBM experimental concept.

V. Friese Fast Realtime Systems, GielRen, 8 April 2024
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Trigger issues 1: Signatures are complicated

Complicated event topology!
Trigger decision requires track reconstruction and detection of the decay topology.

No chance to realize that in hardware logic. Has to be done in software.

V. Friese Fast Realtime Systems, GielRen, 8 April 2024
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Trigger challenges 2: Event overlap (pile-up)

e Event duration: about 40 ns
* Close-by events will overlap in time

* Hard to detect by simple means; disentangling pile-up events
requires close inspection (tracking)

Pile-up can spoil the physics - and the trigger! true vertex

* Two peripheral events on top of each other may look
like one central event.

reco vertex

* Two primary tracks from different events my look like
secondary tracks -> may fake a decay trigger

true vertex

V. Friese Fast Realtime Systems, GielRen, 8 April 2024

* Average time interval between events: 100 ns (Poisson process)

* Not to be realized in a hardware trigger; to be done in software.
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Note bene: Fixed-target vs. collider experiments

Collider Fixed-target

* Continuous beam on target;

* Collisions at well-defined points in . -
continuous collisions.

time (bunch crossing): external trigger
from the machine clock.  No beam trigger.

* Macroscopic bunch crossing area: pile- All interactions take place in a thin
up events can be resolved in space. target.

 Collision must be resolved in time.

V. Friese Fast Realtime Systems, GielRen, 8 April 2024 13



Meet the Challenges: Free-Streaming Readout

Detector

FEE buffer

Readout
buffer

Network

Processor
farm

Storage
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Self-triggering Front-end;
all hits shipped to DAQ.
Data push architecture

| Fast FEE links

/

Readout buffer outside
radiation area, many GByte
Allows LI decision times up to
100-1000 ms

/l High-throughput network

L~

First event selection
performed in processor
farm

Typical Parameters:
1% occupancy, 107 int./s
100 kHz channel hit rate

| MByte/s per channel
whole CBM: ~ | TByte/s

No hardware trigger at all
Continuous readout by autonomous FEE

FEE sends data message on each signal above
threshold (“self-triggered”)

Hit message come with a time stamp; readout
system is synchronised by a central clock

DAQ aggregates messages based on their time
stamp into “time slices”

Time slices are delivered to the online computing
farm (FLES)

“Event building” and storage decision on data
selection is done in software in the FLES.

Fast Realtime Systems, GieRen, 8 April 2024 14



CBM Readout Architecture
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~— First-level Event Selector (FLES)
Dual HPC cluster
Entry stage design data rate > 1 TB/s
High-speed, RDMA-enabled network

Fast Realtime Systems, GielRen, 8 April 2024
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Timeslice Building: Data Model
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Partitioning of the data streams into short, context-free time intervals

and encapsulating them into data transport containers called microslices

Meta data provides all necessary information for data handling, e.g., start time
. Partitioning can be done locally by the subsystems

Free choice of optimal detector data format for each subsystem

V. Friese Fast Realtime Systems, GieRen, 8 April 2024
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Online Data Selection

* Time and charge calibration
e Cluster and hit reconstruction
* Track reconstruction

e Event construction

* Event analysis (w.r.t. trigger signature) and trigger decision

* Traditionally done offline
 To be done in real-time
* Needs very fast algorithms

* Massively parallel computing (multi-core, GPU) in the GSI
Data Centre

-
.
-
-
-
-
.
.
-
-
.
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Issues of a Continuous Readout System

* The task of identifying events and inspecting them for signatures of interesting physics (rare
observables) is shifted from electronic hardware to software.

* Precise understanding the timing behaviour of the detector and their readout electronics is
mandatory!

* Detector noise and other backgrounds need to be understood and treated as well.

all

events

beam

counts / ns

noise

-
o
w

10?

o m

0 200 400 600 800 1000 1200
time [ns]

10

Simulated STS data (w/o thermal shielding),
Au+Au @ 10A GeV, beam rate 10%/s, event rate 107/s

V. Friese Fast Realtime Systems, GielRen, 8 April 2024 18



Data Inspection in Real-Time

For a given event / data rate, the speed of the algorithms determines the required size of the online
compute farm.

For a given financial budget / size of the online farm, the speed of the algorithms determine the
physics output of the experiment.

High-performance online software is a pre-requisite for the successful operation of CBM.

— Make optimal use of available parallel computer architectures: many-core, GPU, accelerators

— Be flexible to upcoming new architectures

Parallelism is the key word
— Data-level parallelism: one timeslice per compute node (if GPUs are used: one timeslice per GPU)
— Task-level and data-level parallelism within time slice
— Simplest approach: one process per timeslice
— Multi-threading on CPU within timeslice using OpenMP

— Mult-threading on GPU using the XPU framework

V. Friese Fast Realtime Systems, GielRen, 8 April 2024



The Key: Finding Tracks Online

100 AuAu minimum bias events at 10 AGeV

All tracks 92.5 % 93.8 % 93.5 %
Primary high-p 98.3 % 98.1 % 97.9 %
Primary low-p 93.9 % 95.4 % 95.5 %

Secondary high-p 90.8 % 94.6 % 93.5 %
Secondary low-p 62.2 % 68.5 % 67.6 %
Clone level 0.6 % 0.6 % 0.6 %
Ghost level 1.8 % 0.6 % 0.6 %
True hits per track 92% 93 % 93 %
Hits per MC track 7.0 7.0 6.97

High efficiency for primary tracks

Rate effects become visible above 1 MHz

interaction rate

V. Friese
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Good scaling behaviour: well suited for
many-core systems

Fast Realtime Systems, GieRen, 8 April 2024

0 10 20 30 40 50 60 70 80

20



Entries

Resolving event pile-up

Hit time measurement in STS at interaction rate 10 MHz

High rate scenario: STS hits+tracks+ mcEvent vs time

3
B . 10 - 10 MHz Time resolution: 5ns
16° Events overlap on hit level - Dead time: 800 ns
10°
track finder 10 =
1E
:llllllLlllllllII.I__l__l__
0 2000 4000 6000 800010000 3800 4000 4200 4400 4600 4800
i time (ns)
* Reliable event resolution requires track reconstruction.
* Tracking operates on stream of detector hits, without event association.
* Needs a 4d track model (x, y, z, t, g/p); sophisticated algorithm.
* Reduces the temporal event extension from ~40 ns to ~3 ns.
 Runs in software - no way to have it in hardware.
V. Friese Fast Realtime Systems, GieRen, 8 April 2024
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Not all triggers are complicated...

The muon system has a very simple

measurement principle.

Trigger requires two tracks to pass the
absorbers at the same time.

Simple algorithm; implementation on various
platforms (CPU / GPU) investigated at VECC.

g S CUDROITo Table 1: Results for the event selection algorithm on the Tesla GPU
E = OpenCL on Tesla # # # GPU  CPU- CPU Speed-
. = ggfrf\cf"oﬁ’ugaﬂﬁm Events blocks threads Time  GPU Time  Up (CPU
8 (ms) Transfer  (ms) time/GPU
£ Time(ms) time)
S 1000 32 32 23.9 1.2 16.38 0.69
§10 2000 64 32 27 2.9 3240  1.20
5 3000 64 64 29 6.7 48.60 1.68
L 4000 64 64 32 9.4 64.83 2.03
5000 128 64 33.9 10.1 81.16 2.39
10000 128 128 48.9 12 161.67 3.31
20000 256 128 89.7 14.5 320.24  3.57
40000 512 128 140.7 19.7 640.25  4.55
| Lol L 80000 1024 128 289.8 28.3 1280.39 4.42

10° 10*

Number of events

V. Singhal et al., Comp. Phys. Comm. 252 (2020) 107190
V. Friese Fast Realtime Systems, GielRen, 8 April 2024
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Selectivity and operation modes

Not all observables require or allow a highly selective trigger:
* Some have no trigger signature: fluctuations, low-mass electron pairs
 Some are not rare: all bulk observables

« Some allow lesser selectivity: high-mass electron pairs Recordable min. bias rate

(w/o online selection):
10° events/s

Of course, CBM can also be operated at lower rates!

N.b.: High-rate operation allows to take selective (triggered) data together with min. bias (downscaled to
saturate the bandwidth).

V. Friese Fast Realtime Systems, GielRen, 8 April 2024 23



Our testbed: mCBM

periment
GSI SIS18
March 27, 2022

e First runs 2021, 2022 (w/o online processing, all data to disk)

* Next benchmark run: 2024, applying online data selection

V. Friese Fast Realtime Systems, GielRen, 8 April 2024

A full-system sandbox with detector
prototypes / pre-series components

Study detectors after integration

Verify free-streaming read-out and
data transport and online data
processing

Benchmark online data processing

Gain operational experience

24



MCBM Data Transport System
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MCBM: Data Path Performance

Data rate per subsystem

FLES

3 GB/s 6 GB/s
. max avg v
input |
250 GB/s 5GB/s ™ Total (right-y) 499 GB/s 2.39GB/s
== STS 2.50 GB/s  1.17 GB/s
2 GB/s 4 GB/s
«= TRD 1.69 GB/s 770 MB/s
1.50 GB/s 3 GB/s TOF 440 MB/s 192 MB/s
= TRD2D 325MB/s 141 MB/s
1GB/s 2 GB/s
== MUCH 70.1 MB/s  62.7 MB/s
500 MB/s TGB/s _ RicH 120 MB/s  55.5 MB/s
0B/s 0B/s == TO 2.33MB/s 1.80 MB/s

21:39:20 21:39:30 21:39:40 21:39:50 21:40:00 21:40:10 21:40:20 21:40:30 21:40:40 21:40:50

Full timeslices buffered (build node 0)

FLES "

output B Run 2448
June 16, 2022
5 Au+ Au, T=1.23 AGeV
av. collision rate: 300 - 400kHz
, av. data rate 2.4 GB/s to disc

21:39:20  21:39:30  21:39:40 21:39:50 21:40:00 21:40:10 21:40:20 21:40:30 21:40:40  21:40:50
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MmCBM: Data Challenges

* Until 2022: No online data processing; dumping raw data (full timeslices) to disk
 Development of online processing chain with re-play of archived raw data (emulates DAQ)
* Allows to study and benchmark timeslice building and online data processing prototypes

* Gain operational experience - interplay of owned resources (entry nodes) with shared resources (compute
nodes).

Processing Throughput
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20 GB/s
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V. Friese Fast Realtime Systems, GielRen, 8 April 2024



MCBM: Inclusion of Track Reconstruction

~ Quick CPU / Mem / Disk
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The state of our art...

* Complete event reconstruction developed for offline purposes.

* Ongoing: adapting / porting / optimising for online usage.

 Development and testing on real data (mCBM) and simulated data (full CBM)

V. Friese
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Optimisation example: STS hit finder
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MCBM: Achievements and Next Steps

v' Multi-core parallelization (OpenMP) of all reconstruction steps (STS, TOF, tracking).
v" STS unpacking and reconstruction ported to GPU and tested on VIRGO nodes.

v' Commissioning beam time March 2024: applied online processing during data taking; minimum-bias trigger
based on digi multiplicity; data reduction by a factor of four.

 Benchmark beam time May 2024 (Ni+Ni): Application of full online reconstruction and trigger on displaced
vertices (Lambda).
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Summary: From mCBM to CBM

2022 2023 2024 2025 2026 2027

Building Shell construction Technical Building Infrastructure
Details t.b.d. (Scenario 3)
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Rails, . . ’
Dipole found. Plationn Detector infrastructure Magnet installation Upstream detectors @
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CBM pre-commissioning
+ We plan CBM ready for beam in mid 2027
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some way up already.
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