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QCD Matter Physics: Theory and Experiment
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• Phase structure: 1st-order phase transition? Critical point? If yes, 
where?

• Equation of state?

• New QCD phases?

C. Höhne, QM 2023

• Freeze-out points map the phase diagram

• Variation of collision energy allows to study different regions: 

- High energies (LHC, RHIC): vanishing density, high temperature

- Lower energies (AGS, FAIR, GSI): high density, moderate temperature



What’s FAIR?
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• Facility for Anti-proton and Ion Research
• A major new infrastructure for basic and applied research at GSI in Darmstadt, Germany
• 11 international partners
• Currently under construction - start of operations 2028



What’s FAIR?
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• Complex accelerator facility for a 
variety of physics

• Including slowly extracted nuclear 
beams for fixed-target 
experiments

• Full stripped heavy ions up to p = 
12 GeV/c with intensities up to 
1010 ions / s.

• Symmetric nuclei up to 14 GeV/c; 
protons up to 30 GeV/c.

CBM energy range: 
P = 3.5 - 12 GeV/c
𝑠!! = 2.3 - 5.3 GeV



A rich menu of observables
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A. Andronic et al., PLB 697 (2011) 203

... some of which are really rare!



CBM in a Nutshell
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• Measure charged pions, kaons, protons
• Measure electrons and muons
• Reconstruct weak decay topologies (hyperons, hyper-

nuclei, charm)
• In fixed-target collisions in the FAIR-SIS100 energy range
• In a large acceptance
• With high precision
• With high statistics

Simulated Au+Au collision @ 12 AGeV (UrQMD)

Punchline: Moderate collision energy, very high rates



CBM as it will be
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Detector Systems
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Silicon Tracking 
System for tracking of 
charged particles

Micro-Vertex 
Detector for 
measurement of 
displaced vertices

Time-of-Flight 
detector for 
identification of 
hadrons

Ring-Imaging 
Cherenkov detector 
for identification of 
electrons

Transition-Radiation 
Detector for 
identification of 
electrons and 
intermediate 
tracking

Muon System for 
identification of 
muons



The High-Rate Frontier
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CBM design rate:  up to 10 million collisions per second.
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Compilation by T. Galatyuk:
https://github.com/tgalatyuk/interaction_rate_facilities

x 107/s !



Rate issues
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• Radiation load on detectors and front-end electronics. Difficult, but not unsurmountable.

• Fast timing response of detectors and electronics

• HUGE data rate coming off the detectors 

• Raw data size: ~100 kB / event (min. bias Au+Au @ 12 GeV/u).

• 107 events/s  ->  1 TB/s raw data rate from the detector.

• Archival rate: 100 GB/s surely possible; 1 TB/s on the high side

• Data volume, assuming 2 months of operation per year (5 x 106 s): 
5 EB / year!

Data selection in real-time (by about 3 OOM) is base of the CBM experimental concept.



Trigger issues 1: Signatures are complicated
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Complicated event topology!

Trigger decision requires track reconstruction and detection of the decay topology.

No chance to realize that in hardware logic. Has to be done in software.



Trigger challenges 2: Event overlap (pile-up)
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• Average time interval between events: 100 ns (Poisson process)

• Event duration: about 40 ns

• Close-by events will overlap in time

• Hard to detect by simple means; disentangling pile-up events 
requires close inspection (tracking)

• Not to be realized in a hardware trigger; to be done in software.

Pile-up can spoil the physics - and the trigger!

• Two peripheral events on top of each other may look 
like one central event.

• Two primary tracks from different events my look like 
secondary tracks -> may fake a decay trigger

true vertex

true vertex

reco vertex



Note bene: Fixed-target vs. collider experiments
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Collider

• Collisions at well-defined points in 
time (bunch crossing): external trigger 
from the machine clock.

• Macroscopic bunch crossing area: pile-
up events can be resolved in space.

Fixed-target

• Continuous beam on target; 
continuous collisions.

• No beam trigger.

• All interactions take place in a thin 
target.

• Collision must be resolved in time.



Meet the Challenges: Free-Streaming Readout
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• No hardware trigger at all
• Continuous readout by autonomous FEE
• FEE sends data message on each signal above 

threshold (“self-triggered”)
• Hit message come with a time stamp; readout 

system is synchronised by a central clock
• DAQ aggregates messages based on their time 

stamp into “time slices”
• Time slices are delivered to the online computing 

farm (FLES)
• “Event building” and storage decision on data 

selection is done in software in the FLES.



CBM Readout Architecture
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Timeslice Building: Data Model
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• Partitioning of the data streams into short, context-free time intervals
and encapsulating them into data transport containers called microslices

• Meta data provides all necessary information for data handling, e.g., start time
• Partitioning can be done locally by the subsystems
• Free choice of optimal detector data format for each subsystem



Online Data Selection
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• Traditionally done offline

• To be done in real-time

• Needs very fast algorithms

• Massively parallel computing (multi-core, GPU) in the GSI 
Data Centre

• Time and charge calibration
• Cluster and hit reconstruction
• Track reconstruction
• Event construction
• Event analysis (w.r.t. trigger signature) and trigger decision



Issues of a Continuous Readout System
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• The task of identifying events and inspecting them for signatures of interesting physics (rare 
observables) is shifted from electronic hardware to software.

• Precise understanding the timing behaviour of the detector and their readout electronics is 
mandatory!

• Detector noise and other backgrounds need to be understood and treated as well.
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Data Inspection in Real-Time

V. Friese Fast Realtime Systems, Gießen, 8 April 2024 19

• For a given event / data rate, the speed of the algorithms determines the required size of the online 
compute farm.

• For a given financial budget / size of the online farm, the speed of the algorithms determine the 
physics output of the experiment.

• High-performance online software is a pre-requisite for the successful operation of CBM.
– Make optimal use of available parallel computer architectures: many-core, GPU, accelerators

– Be flexible to upcoming new architectures

• Parallelism is the key word
– Data-level parallelism: one timeslice per compute node (if GPUs are used: one timeslice per GPU)

– Task-level and data-level parallelism within time slice

– Simplest approach: one process per timeslice

– Multi-threading on CPU within timeslice using OpenMP

– Mult-threading on GPU using the XPU framework



The Key: Finding Tracks Online
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High efficiency for primary tracks
Rate effects become visible above 1 MHz 
interaction rate
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Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013      /40 

CBM Standalone First Level Event Selection (FLES) Package

CA Track Finder

KF Track Fitter

KF Particle Finder

Particle Selection

Quality Check

FLES

HitsGeometry

Efficiencies

Output

Histograms

MC

36

Given n threads each filled with 1000 events, 
run them on specified n cores, thread/core.

Good scaling behaviour: well suited for 
many-core systems



Resolving event pile-up
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• Reliable event resolution requires track reconstruction.
• Tracking operates on stream of detector hits, without event association.
• Needs a 4d track model (x, y, z, t, q/p); sophisticated algorithm.
• Reduces the temporal event extension from ~40 ns to ~3 ns.
• Runs in software - no way to have it in hardware.

track finder



Not all triggers are complicated...
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• The muon system has a very simple 
measurement principle.

• Trigger requires two tracks to pass the 
absorbers at the same time.

• Simple algorithm; implementation on various 
platforms (CPU / GPU) investigated at VECC.

V. Singhal et al., Comp. Phys. Comm. 252 (2020) 107190



Selectivity and operation modes
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Not all observables require or allow a highly selective trigger:

• Some have no trigger signature: fluctuations, low-mass electron pairs

• Some are not rare: all bulk observables

• Some allow lesser selectivity: high-mass electron pairs

Of course, CBM can also be operated at lower rates!

N.b.: High-rate operation allows to take selective (triggered) data together with min. bias (downscaled to 
saturate the bandwidth).

Recordable min. bias rate 
(w/o online selection): 

105 events/s



Our testbed: mCBM
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• A full-system sandbox with detector 
prototypes / pre-series components

• Study detectors after integration

• Verify free-streaming read-out and 
data transport and online data 
processing

• Benchmark online data processing

• Gain operational experience

• First runs 2021, 2022 (w/o online processing, all data to disk)

• Next benchmark run: 2024, applying online data selection



mCBM Data Transport System
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mCBM: Data Path Performance
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FLES
input

FLES
output

TOF

Run 2448
June 16, 2022
Au + Au, T = 1.23 AGeV
av. collision rate: 300 - 400kHz
av. data rate 2.4 GB/s to disc



mCBM: Data Challenges
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• Until 2022: No online data processing; dumping raw data (full timeslices) to disk

• Development of online processing chain with re-play of archived raw data (emulates DAQ)

• Allows to study and benchmark timeslice building and online data processing prototypes

• Gain operational experience - interplay of owned resources (entry nodes) with shared resources (compute 
nodes).

DC 3 (December 2023)
Unpacking + event building 
+ local reconstruction



mCBM: Inclusion of Track Reconstruction
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DC 4 (February 2024)
Unpacking + event building + local 
reconstruction + track reconstruction (not yet 
multi-threaded)



The state of our art...
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• Complete event reconstruction developed for offline purposes.

• Ongoing: adapting / porting / optimising for online usage.

• Development and testing on real data (mCBM) and simulated data (full CBM)

Optimisation example: STS hit finder



mCBM: Achievements and Next Steps
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ü Multi-core parallelization (OpenMP) of all reconstruction steps (STS, TOF, tracking).

ü STS unpacking and reconstruction ported to GPU and tested on VIRGO nodes.

ü Commissioning beam time March 2024: applied online processing during data taking; minimum-bias trigger 
based on digi multiplicity; data reduction by a factor of four.

• Benchmark beam time May 2024 (Ni+Ni): Application of full online reconstruction and trigger on displaced 
vertices (Lambda).

mCBM simulation
100 M events
105 events/s

mCBM offline data analysis (preliminary)
Run 2391 (May 2022)

Av. rate 5 * 105 events/s
109 events



Summary: From mCBM to CBM
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A long and winding 
road - but we are 
some way up already.


