

18th INTERNATIONAL CONFERENCE ON B-PHYSICS AT FRONTIER MACHINES

Ljubljana, Slovenia September 30 - October 4, 2019

Provides a unique probe to unravel deeper mysteries of universe with intense sources and highly sensitive detectors

First-generation e^+e^- flavor factories

Success culminated in 2008 Nobel prize in Physics
 Rich legacy left for next-gen expt. EPJ C74, 3026 (2014)

So, why another e^+e^- flavor factory?

- □ Precision CKM metrology → Standard Model (SM) candle
- □ New CP violating phase? \rightarrow CP violation in *B* and *D* decays
- ❑ Any imprints of new physics beyond SM in FCNC transitions? → radiative and electroweak penguin decays
- How about charged Higgs boson or leptoquark? → tree-level *B* decay to $\tau \nu$ or $D^{(\star)}\tau \nu$ final state
- New physics in the charged lepton sector → search for lepton flavor violating tau decays
- Can we chase down dark matter from bottom? → probe hidden dark sector

SuperKEKB will address these questions with almost two orders of magnitude larger dataset than Belle+BABAR

Snapshots of what $\frac{2}{B_{B_{B_{max}}}}$ can achieve?

				-		
Observables	Expected the. accu-	Expected	Facility (2025)	Erom Dalla II maria		
	racy	exp. uncertainty		From Bene II physics		
UT angles & sides						
ϕ_1 [°]	***	0.4	Belle II	book arXiv:1808.10567		
ϕ_2 [°]	**	1.0	Belle II			
ϕ_3 [°]	***	1.0	LHCb/Belle II			
$ V_{cb} $ incl.	***	1%	Belle II	Precision CKM metrology		
$ V_{cb} $ excl.	***	1.5%	Belle II			
$ V_{ub} $ incl.	**	3%	Belle II			
$ V_{ub} $ excl.	**	2%	Belle II/LHCb			
CP Violation			٦			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II	Direct and mixing induced		
$S(B \to \eta' K^0)$	***	0.01	Belle II	Direct and mixing-mutted		
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	CP violation in B decays		
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II			
(Semi-)leptonic			,			
$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	Belle II			
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	**	7%	Belle II			
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II	(Semi-)leptonic B decays		
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb			
Radiative & EW Penguins						
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II			
$A_{CP}(B \rightarrow X_{*,d}\gamma)$ [10 ⁻²]	***	0.005	Belle II			
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II	Radiative & electroweak		
$S(B \to \rho \gamma)$	**	0.07	Belle II			
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II	penguins		
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II	1 0		
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb			
Charm			,	-		
$\mathcal{B}(D_s \to \mu\nu)$	***	0.9%	Belle II			
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II			
$A_{CP}(D^0 \to K_s^0 \pi^0) \ [10^{-2}]$	**	0.03	Belle II	Vibrant charm program		
$ q/p (D^0 \to K_{S}^0 \pi^+ \pi^-)$	***	0.03	Belle II			
$A_{CP}(D^+ \to \pi^+ \pi^0) \ [10^{-2}]$	**	0.17	Belle II			
Tau				1		
$\tau \rightarrow \mu \gamma \ [10^{-10}]$	***	< 50	Belle II			
$\tau \rightarrow e \gamma \ [10^{-10}]$	***	< 100	Belle II	 Search of LFV tau decavs 		
$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCb	4		

KEKE: New intensity frontier machine

Targets to deliver e⁺e⁻ collisions at a peak luminosity of 8 × 10³⁵ cm⁻²s⁻¹,
 40 times that of KEKB

- ♦ Increase beam currents twice
- ♦ Reduce beam size by 20 times

How far have we gone?

- **a** Reached β_{γ}^{\star} = 33 mm in 2018
- ❑ Went down β^{*}_y = 2 mm by end Ξ of Summer 2019 (with Belle II off) → starting point for fall run
- Design luminosity requires one more order-of-magnitude jump to $\beta_y^{\star} = 0.3 \text{ mm}$

- Phase 2 (2018): beam commissioning (establish nano-beam scheme, reach the KEKB luminosity, and measure beam backgrounds) as well as for doing some physics with partial vertex detector
- Phase 3 (2019 onward): physics run with almost complete vertex detector

Currents achieved: 880 (940) mA for e⁺ (e⁻) beam → need 3 (4)× scale up

Belle II collaboration

- Close to 950 researchers from 112 institutions in 26 countries
- Slovenia is an important player
- Leadership position, as well as key contributions to detector, reconstruction software and computing

Designed to operate with a performance similar or better than Belle, but in a harsh beam background condition

> K_L and muon detector (KLM): Resistive plate counter (barrel outer), plastic scintillator + WLS fiber + SiPM (endcap and inner two barrel layers)

EM Calorimeter (ECL): CsI(TI) crystals, waveform sampling readout

electrons (7 GeV)

Beryllium beam pipe (2 cm diameter)

Vertex Detector (VXD): 2-layer pixel (PXD) + 4-layer strip (SVD)

> Central Drift Chamber (CDC): He(50%)+C₂H₆(50%), small cells, long lever arm, fast electronics

Particle identification (PID): Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Two detector highlights

Barrel PID (uses Cherenkov radiation)

The paths of Cherenkov photons from a 2 GeV pion and kaon interacting in a TOP quartz bar (Japan, US, Slovenia and Italy)

Quartz bar (length = 2600 mm, width = 450 mm, thickness = 20 mm

VXD (6 layer Si for vertexing & inner tracking)

Beampipe r = 10 mmDEPFET pixels (Germany, Czech Republic, Spain...) Layer 1 r = 14 mmLayer 2 r = 22 mm (1/6 now, rest in 2020)DSSD (double sided silicon micro-strips) Layer 3 r = 38 mm (Australia)Layer 4 r = 80 mm (India)Layer 5 r = 115 mm (Austria)Layer 6 r = 140 mm (Japan)

A performance example: dE/dx in CDC

A physics example: fresh from

Study of untagged B → D*ℓνℓ channel using 5.15 fb⁻¹ early phase-3 data

Over 1k signal events in both electron and muon channels

 For more on physics, see talks by Graziani, Yonenaga, Yusa and Kwon

Prospects: physics harvesting

Adapted from Forti's talk at EPS-HEP 2019

Prospects: improvements to detector

Short term:

- Replacement of MCP-PMTs with ALD PMTs for TOP
- Complete installation of VXD layer-2
- DAQ upgrade

Medium term:

Looking at options for making the detector more resilient against the background and radiation bursts

Long term:

- Started thinking about possibilities for luminosity upgrade
- e.g., Belle II VXD open workshop <u>http://indico.cern.ch/event/810687/</u>

Closing words

- □ Belle II will probe new physics at the intensity frontier → complementary to high p_T programs of ATLAS and CMS
- □ As for LHCb, there is healthy competition and complementarity between the two
- □ 1st physics run in Spring 2019 has completed delivering ~6.5 fb⁻¹ → fall run is about to begin
- Detector and machine initial performances have been good, though the road ahead is pretty long to achieve the design goal

Additional information

Belle II vs. LHCb

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
ϕ_2		1.5°	Belle II
ϕ_3	***	3°	LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II
$S(B_s \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \to \rho \gamma))$		0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A_{SL}^s	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$\mathcal{B}(B \rightarrow D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \to \mu \nu)$	**	6%	Belle II
$\mathcal{B}(B_s o \mu \mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab^{-1})
$\mathcal{B}(K \rightarrow \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory
charm and τ			
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II

- Great for neutral and missing energy modes
- Inclusive measurement: OK
- Excellent flavor tagging and K_s reconstruction

- Belle (II) baseline: 70% data Y(48) Belle (II) improved K :70% data Y(48) - Belle (II) improved K : all data Y(48)

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Year

Comparison: KEKB vs. SuperKEKB

narawatara	KEKB		SuperKEKB			
parameters	LER	HER	LER	HER	01115	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	¢	11		41.5		mrad
Horizontal emittance	Ex	18	24	3 .2	4.6	ทท
Emittance ratio	к	0.88	0.66	0.37	0.40	7.
Beta functions at IP	β x*/βy*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.1 9	3.60	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity L		2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹