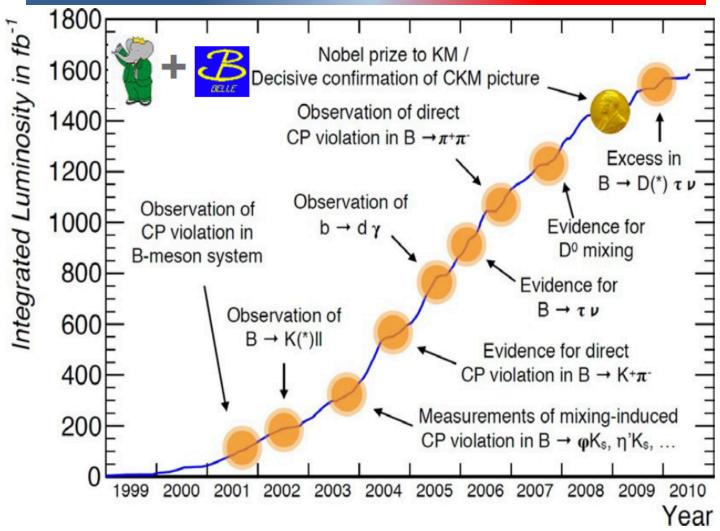


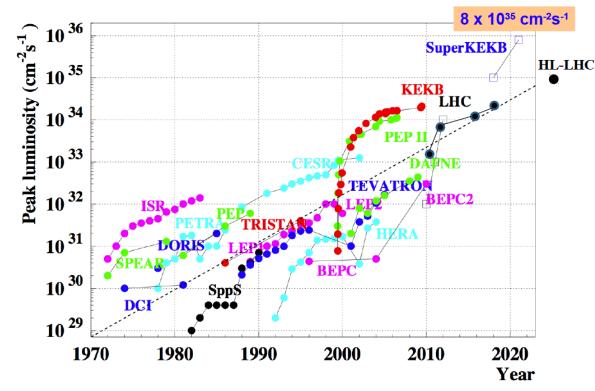
status and prospects



18th INTERNATIONAL CONFERENCE ON B-PHYSICS AT FRONTIER MACHINES

Ljubljana, Slovenia September 30 - October 4, 2019 Gagan Mohanty

First-generation e⁺e⁻flavor factories



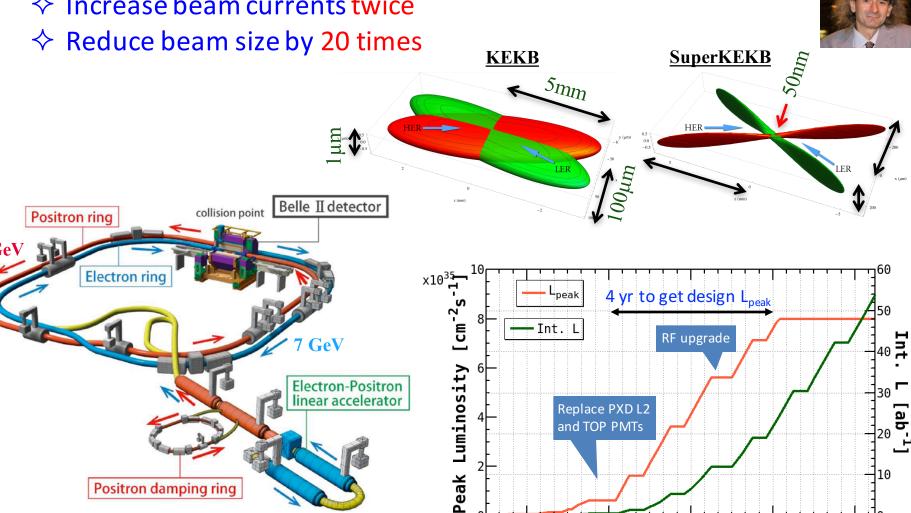
- Success culminated in 2008 Nobel prize in Physics
- Rich legacy left for next-gen expt. EPJ C74, 3026 (2014)

So, why another e⁺e⁻flavor factory?

- ☐ Precision CKM metrology → Standard Model (SM) candle
- \square New CP violating phase? \rightarrow CP violation in B and D decays
- ☐ Any imprint of new physics beyond SM in FCNC transitions? → radiative and electroweak penguin decays
- How about charged Higgs boson or leptoquark? \rightarrow tree-level B decay to $\tau \nu$ or $D^{(\star)} \tau \nu$ final state
- New physics in tau lepton sector → search for lepton flavor violating (LFV) tau decays
- □ Can we chase down dark matter from bottom? → hidden dark sector

© SuperKEKB will address these questions with almost two orders of magnitude larger dataset than Belle+BABAR

Snapshots of what can achieve?


Observables	Expected the. accu-	Expected	Facility (2025)	\sim P D 11 H 1 '
	racy	exp. uncertainty		🏻 🖙 From Belle II physics
UT angles & sides				1 •
ϕ_1 [°]	***	0.4	Belle II	book arXiv:1808.10567
ϕ_2 [°]	**	1.0	Belle II	
ϕ_3 [°]	***	1.0	LHCb/Belle II	
$ V_{cb} $ incl.	***	1%	Belle II	Precision CKM metrology
$ V_{cb} $ excl.	***	1.5%	Belle II	
$ V_{ub} $ incl.	**	3%	Belle II	
$ V_{ub} $ excl.	**	2%	Belle II/LHCb	
CP Violation			7	
$S(B \to \phi K^0)$	***	0.02	Belle II	Direct and mixing-induce
$S(B o \eta' K^0)$	***	0.01	Belle II	Direct and mixing-induce
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II	CP violation in B decays
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II	Ci violationini D decays
(Semi-)leptonic			•	-
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II	
$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	**	7%	Belle II	(Comi Montonio D. docovo
R(B o D au u)	***	3%	Belle II	(Semi-)leptonic B decays
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb	
Radiative & EW Penguins				_
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II	
	***	0.005	Belle II	
$\begin{array}{l} A_{CP}(B \to X_{s,d} \gamma) \ [10^{-2}] \\ S(B \to K_S^0 \pi^0 \gamma) \end{array}$	***	0.03	Belle II	Radiative & electroweak
$S(B \to \rho \gamma)$	**	0.07	Belle II	7
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II	penguins
$\mathcal{B}(B \to K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II	
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb	
Charm				-
$\mathcal{B}(D_s \to \mu\nu)$	***	0.9%	Belle II	
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II	
$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	**	0.03	Belle II	Vibrant charm program
$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II	vibrant chann program
$A_{CP}(D^+ \to \pi^+ \pi^0) [10^{-2}]$	**	0.17	Belle II	
Tau		w.#1	20110 11	<u> </u>
$\tau \to \mu \gamma \ [10^{-10}]$	***	< 50	Belle II	
$ au o e\gamma \left[10^{-10}\right]$	***	< 100	Belle II	Search of LFV tau decays
$\tau \to \mu \mu \mu \ [10^{-10}]$	***	< 3	Belle II/LHCb	
$I \rightarrow \mu\mu\mu$ [10]		< o	Delle II/LHCb	_

: New intensity frontier machine

 \square Targets to deliver e⁺e⁻ collisions at a peak luminosity of 8 \times 10³⁵ cm⁻²s⁻¹, 40 times that of KEKB

♦ Increase beam currents twice

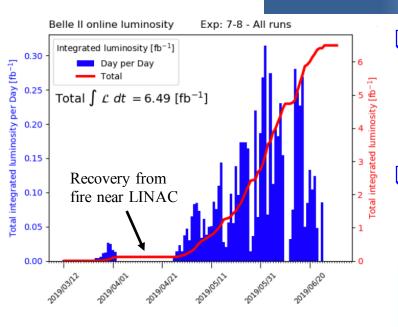
Replace PXD L2 and TOP PMTs

2021

2023

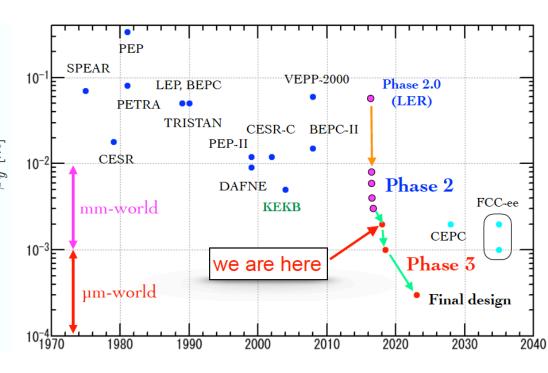
2025

2019


Electron-Positron linear accelerator

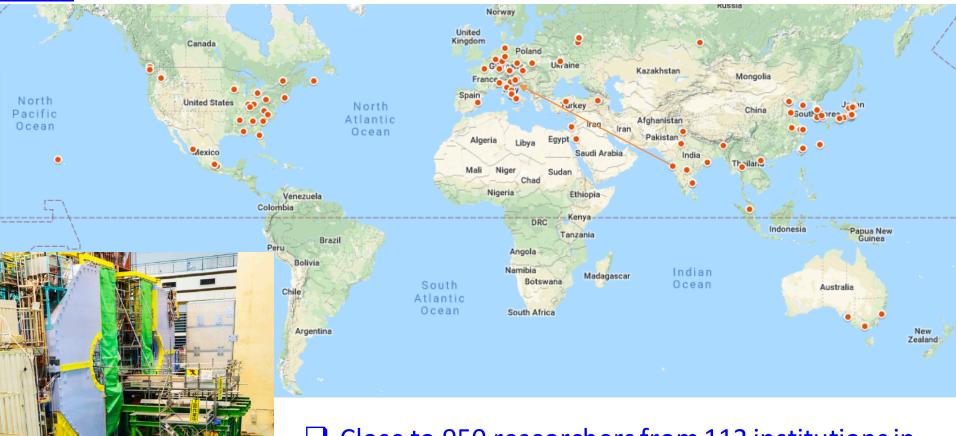
First new particle collider after LHC!

Positron damping ring

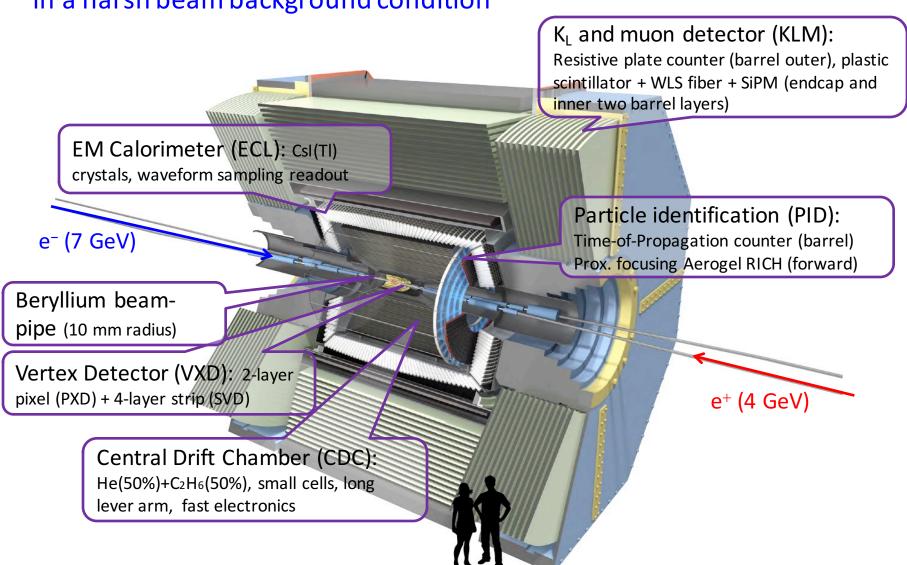

2027

How far have we gone?

- Phase 2 (2018): beam commissioning (establish nano-beam scheme, reach the KEKB luminosity, and measure beam backgrounds) as well as for doing some physics with partial vertex detector
- → Phase 3 (2019 onward): physics run with almost complete vertex detector


- \square Reached β_y^* = 33 mm in 2018
- Went down $\beta_y^* = 2 \text{ mm by end}$ of Summer 2019 (with Belle II off) → starting point for fall run
- Design luminosity requires one more order-of-magnitude jump to $\beta_v^* = 0.3 \text{ mm}$

 \square Currents achieved: 880 (940) mA for e⁺ (e⁻) beam \rightarrow need 3 (4)× scale up


Belle II collaboration

- ☐ Close to 950 researchers from 112 institutions in 26 countries
- ☐ Slovenia is an important player
 - Leadership position, as well as key contributions to detector, reconstruction software and computing

: A 21st century HEP experiment


Designed to operate with a performance similar or better than Belle, but in a harsh beam background condition

Two detector highlights

Barrel PID (imaging TOP): Japan, US, Slovenia and Italy

Example of Cherenkov-photon paths for 2 GeV pion and kaon traversing in a TOP quartz bar

VXD (6 layer Si for vertexing & inner tracking)


```
Beam-pipe r = 10 \text{ mm}

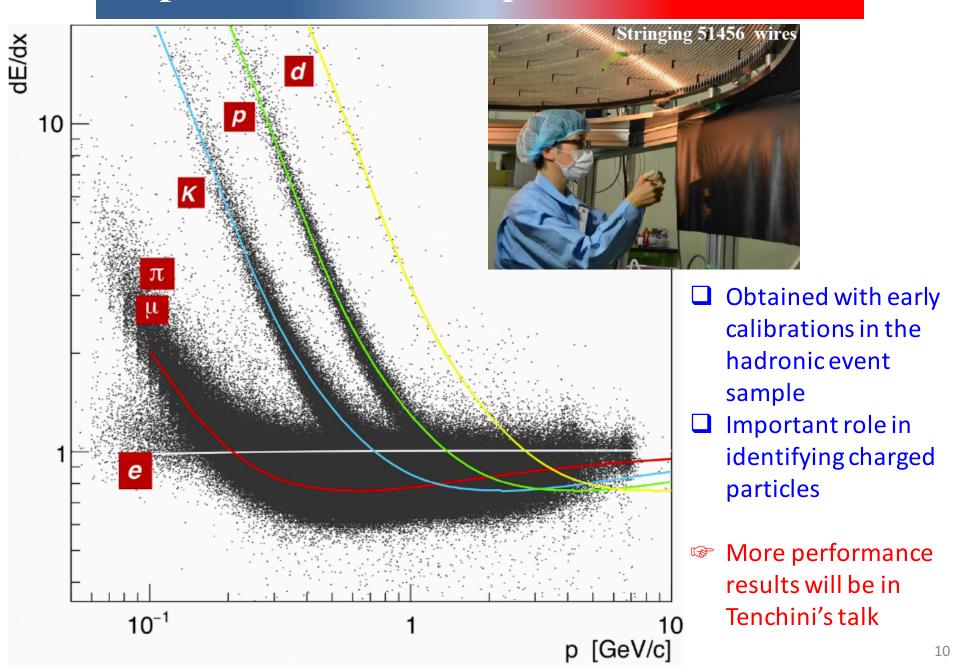
DEPFET pixels: Germany, Czech Republic, Spain...

Layer 1 r = 14 \text{ mm}

Layer 2 r = 22 \text{ mm} (1/6 \text{ now, rest in 2020})

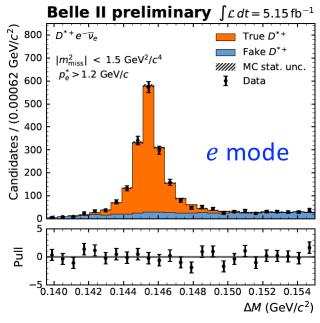
DSSD (double sided micro-strips)

Layer 3 r = 38 \text{ mm} (\text{Australia})

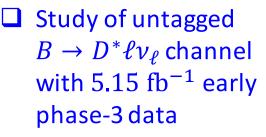

Layer 4 r = 80 \text{ mm} (\text{India})

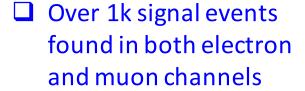
FWD/BWD

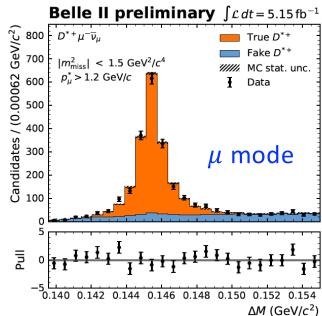
Layer 5 r = 115 \text{ mm} (\text{Austria})
```

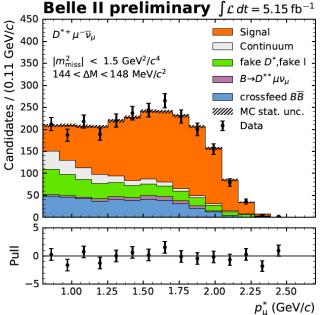

Layer 6 r = 140 mm (Japan)

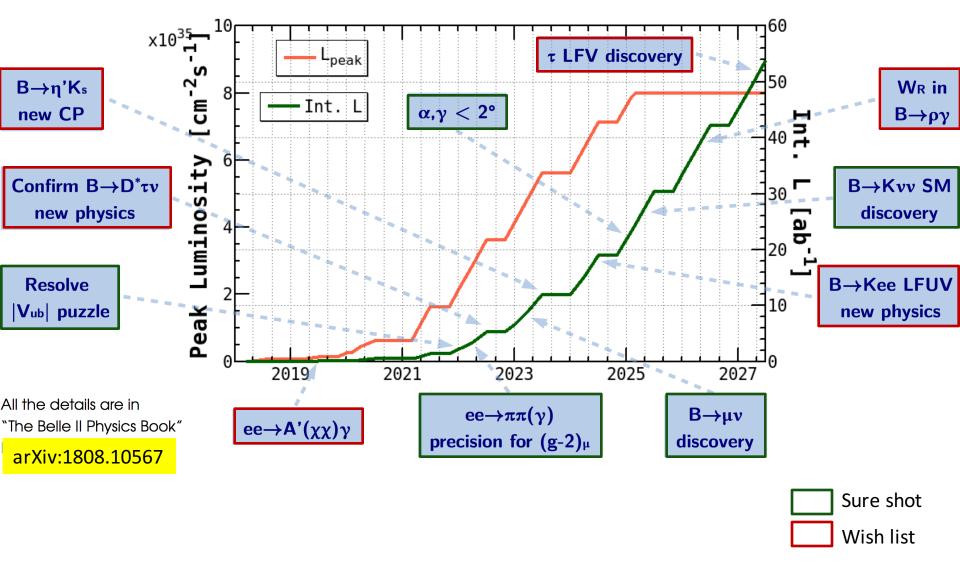
A performance example: dE/dx in CDC




A physics example: fresh from

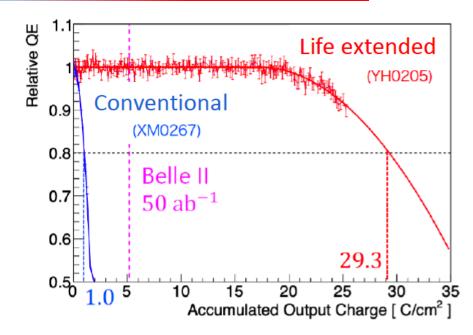






For more on physics, see talks by Yonenaga (rare decays), Graziani (dark sector), Yusa (CP violation in B decays), and Kwon (charm)

Prospects: physics harvesting



Adapted from Forti's talk at EPS-HEP 2019

Prospects: improvements to detector

☐ Short term:

- Replacement of conventional MCP-PMTs with Atomic-layer-deposition (ALD) PMTs for the TOP counters
- Complete installation of PXD layer-2
- DAQ upgrade

Medium term:

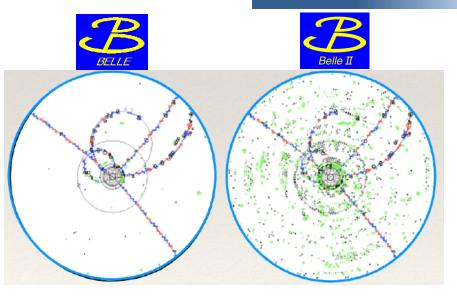
Looking at options for making the detector more resilient against beaminduced background and radiation bursts

☐ Longer term:

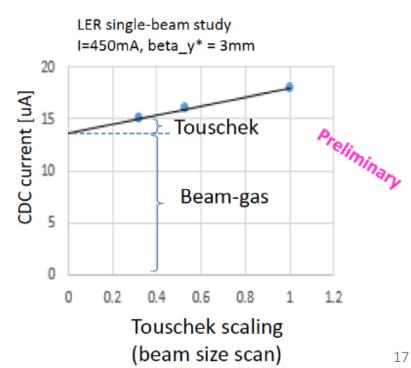
Started to think about possibilities for luminosity upgrade; e.g., Belle II VXD open workshop http://indico.cern.ch/event/810687/

Closing words

- Belle II will probe new physics at the intensity frontier → complementary to high-p_T programs of ATLAS and CMS
- ☐ As for LHCb, there is healthy competition and complementarity between the two experiments
- □ 1st physics run in Spring 2019 has completed delivering \sim 6.5 fb⁻¹ → fall run is about to begin
- ☐ Detector and machine initial performances have been good; we expect the road ahead to be bit long before achieving the design goal



Additional information


Comparison: KEKB vs. SuperKEKB

narawatara	KEKB		SuperKEKB		mita	
parameters	LER	HER	Ler	HER	units	
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	ф	11		41.5		mrad
Horizontal emittance	€x	18	24	3 .2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.37	040	%
Beta functions at IP	βχ*/βγ*	1 20 0/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.19	3.60	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Beam backgrounds

- e⁺e⁻ colliders are clean, however at high L_{peak} value beam backgrounds can become a challenge
- At the highest luminosities, QED processes e.g., $e^+e^- \rightarrow e^+e^-(\gamma)$ & $e^+e^- \rightarrow e^+e^-e^+e^-$ will dominate
- Currently, single beam backgrounds are dominant, larger for the e⁺ beam
 - beam-gas (residual gas in beam-pipe)
 - Touschek (intra-bunch scattering)
 - injection-induced
 - "dust events" (occasional large losses)
- CDC HV trips with large background
- Beam abort protection against spikes due to radiation
 - Simulation and collimator studies

