Tau and Low-Multiplicity Decays at Belle and Belle II

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Lake Louise Winter Institute February 21, 2024

MAXP PHYSICS

- \triangleright Unique and clean laboratory to study weak interaction and hadronic systems
- \blacktriangleright Third-generation lepton potentially sensitive to Beyond Standard Model physics
- **Precision measurement of** τ **requires** τ **factory**
	-

- \triangleright Unique and clean laboratory to study weak interaction and hadronic systems
- \blacktriangleright Third-generation lepton potentially sensitive to Beyond Standard Model physics
- **Precision measurement of** τ **requires** τ **factory**
	- ► Belle : 900 M τ pairs produced $(\mathcal{L} \approx 1 \text{ ab}^{-1})$
	- ► Belle II: 400 M τ pairs produced $(L \approx 0.4 \text{ ab}^{-1})$

$$
\mathcal{M}_{\min} = \sqrt{\mathcal{M}_{3\pi}^2 + 2(\sqrt{s}/2 - \mathcal{E}_{3\pi}^*) (\mathcal{E}_{3\pi}^* - \rho_{3\pi}^*)} < m_\tau
$$

- \blacktriangleright Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ► Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
	- $\blacktriangleright M_{\min}$ distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- Ecuracy determined beam.
		- \triangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle

 \triangleright Belle II provides World's most precise result

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^*-p_{3\pi}^*)}
$$

- \blacktriangleright Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ► Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
	- $\blacktriangleright M_{\min}$ distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		- \triangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle

 \triangleright Belle II provides World's most precise result

$$
M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - \mathcal{E}_{3\pi}^*) (\mathcal{E}_{3\pi}^* - \rho_{3\pi}^*)} < m_\tau
$$

- \blacktriangleright Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ► Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
	- $\blacktriangleright M_{\min}$ distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- Ecuracy determined beam.
		- \triangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle

 \triangleright Belle II provides World's most precise result

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^*-p_{3\pi}^*)}
$$

- \blacktriangleright Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ► Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
	- $\blacktriangleright M_{\min}$ distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- Ecuracy determined beam.
		- \blacktriangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle
- ▶ Belle II provides World's most precise result

- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- E CLEO II measured twice larger width in τ decays compared to other experiments
	- \blacktriangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS in
- \triangleright Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \triangleright Fit partial-wave model to 7-dimensional angular and
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

- $\blacktriangleright \pi^-\pi^-\pi^+$ system forms meson resonances
- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- ► CLEO II measured twice larger width in τ decays compared to other experiments
	- \blacktriangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \triangleright Fit partial-wave model to 7-dimensional angular and
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

- $\blacktriangleright \pi^-\pi^-\pi^+$ system forms meson resonances
- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- ► CLEO II measured twice larger width in τ decays compared to other experiments
	- \blacktriangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \blacktriangleright Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

► First confirmation of COMPASS measurement

 $1^+[\rho(770)\pi]$ _S intensity

 $\times 10^6$

- \triangleright Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**

- **►** Lepton Flavor Violation (LVF) is negligibly small in Standard Model + ν mixing (below 10⁻⁵⁰)
- \triangleright Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
	- \blacktriangleright Search for lepton flavor violating decay channels

$\tau^- \to \ell^- V^0$

- Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- \triangleright Consider 1-prong and 3-prong decays on tag side
- I Multivariate analysis (BDT) to select signal
- \triangleright Signal region defined by

 $M_{\ell V^0} = m_\tau$ due to missing neutrino

- $\Delta E = E_{\ell V^0}^* \sqrt{s}/2 = 0$ upon radioactive effects
- \triangleright World's best upper limit for 8/10 channels
	- $B(\tau^{-} \to e^{-}V^{0}) < (1.7-2.4) \times 10^{-8}$
	- \blacktriangleright $B(\tau^- \to \mu^- V^0) < (1.7-4.3) \times 10^{-8}$

$\tau^- \to \ell^- V^0$

- Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- \triangleright Consider 1-prong and 3-prong decays on tag side
- I Multivariate analysis (BDT) to select signal
- \triangleright Signal region defined by
	- $M_{\ell V^0} = m_\tau$ due to missing neutrino
	- $\Delta E = E_{\ell V^0}^* \sqrt{s}/2 = 0$ upon radioactive effects
- \triangleright World's best upper limit for 8/10 channels

$$
B(\tau^{-} \to e^{-} V^{0}) < (1.7-2.4) \times 10^{-8}
$$

 \blacktriangleright $\overline{B(\tau^{-} \to \mu^{-} V^{0})} < (1.7 - 4.3) \times 10^{-8}$

$\tau \to \mu \mu \mu$

- \triangleright Untagged: Inclusively use rest of event
- \blacktriangleright Multivariate selection yields $3\times$ larger efficiency compared to Belle
- \blacktriangleright Upper limit
	- $B(\tau^-\to\mu^-\mu^+\mu^+)< 1.9\times 10^{-8}$
- \triangleright World's most stringent limit

$\tau \to \ell \alpha$, where α is an invisible particle

Fixed kinematic of two-body decay for given m_{α}

- ► Characteristic for $\tau^- \to \ell^- \alpha$ signal
- Different from Standard Model $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ decays

[Dark Sector Searches at Belle II](#page-17-0)

- \blacktriangleright Dark sector physics
	- \rightarrow Low multiplicity events
- \blacktriangleright L1 trigger for low multiplicity events
	- \blacktriangleright Single muon, track, photon
	- **Displaced-vertex trigger under study**
- \triangleright Well known initial condition at B factories important for dark sector searches
- \blacktriangleright Belle II is sensitive to direct production of MeV to GeV mediators

[Searches for the](#page-18-0) $L_\mu-L_\tau$ Gauge Boson Z^\prime

- ► New gauge boson Z' couples only to 2^{nd} and 3^{rd} generation of leptons $(L_{\mu} L_{\tau})$
- ► Coupling to μ , τ , ν_{μ} , ν_{τ} with strength g'
	- \triangleright Decays visibly and invisibly
	- \blacktriangleright Decays to dark matter χ could be dominant

- Search for peak in mass of recoil system against $\mu\mu$
- \blacktriangleright Neural network for background suppression trained on Z' signal and background
- \triangleright No significant excess observed
- \triangleright $(g 2)_u$ favored region excluded for $0.8 < M_{Z'} < 5 \,\text{GeV}/c^2$ for a fully invisible Z'

- Search for peak in mass of recoil system against $\mu\mu$
- \blacktriangleright Neural network for background suppression trained on Z' signal and background
- \blacktriangleright No significant excess observed
- \triangleright $(g 2)$ _µ favored region excluded for $0.8 < M_{Z^\prime} < 5$ GeV $/c^2$ for a fully invisible Z'

[Dark Sector Searches in](#page-21-0) $Z'\to\tau\tau$

- \triangleright Search for peak in mass of recoil system against $\mu\mu$
- \triangleright τ decays to single charged particle + neutrals
	- **► Suppress background from four leptons**
- Exclusion limits on couplings for three models: Z' , Axion-like particle (ALP) , and leptonic scalar (S)

[Dark Sector Searches in](#page-21-0) $Z'\to\tau\tau$

- Search for peak in mass of recoil system against $\mu\mu$
- \triangleright τ decays to single charged particle + neutrals
	- **► Suppress background from four leptons**
- Exclusion limits on couplings for three models: Z' , Axion-like particle (ALP), and leptonic scalar (S)
	- \triangleright ms probed for the first time above 6.5 GeV/ c^2
	- \triangleright World-leading limits for ALPs

[Dark Sector Searches in](#page-21-0) $Z'\to\tau\tau$

- Search for peak in mass of recoil system against $\mu\mu$
- \triangleright τ decays to single charged particle + neutrals
	- **► Suppress background from four leptons**
- Exclusion limits on couplings for three models: Z' , Axion-like particle (ALP), and leptonic scalar (S)
	- \triangleright ms probed for the first time above 6.5 GeV/ c^2
	- \triangleright World-leading limits for ALPs

[Dark Sector Searches in](#page-24-0) $Z'\to\mu\mu$

- \triangleright Search for peak in opposite-charge di-muon mass
- \triangleright First upper limit for scalar model from a explicit search
- \blacktriangleright Upper limits on Z' already competitive
- ► Exclude Z' and scalar explanations for $(g-2)_{\mu}$ over

[Dark Sector Searches in](#page-24-0) $Z'\to\mu\mu$

- \triangleright Search for peak in opposite-charge di-muon mass
- \triangleright First upper limit for scalar model from a explicit search
- \blacktriangleright Upper limits on Z' already competitive
- Exclude Z' and scalar explanations for $(g-2)_{\mu}$ over wide mass range

Belle and Belle II are leading τ and dark sector searches

- **Precision measurements of** τ **properties**
- \blacktriangleright Various studies of Standard Model parameters
- ▶ Searches for Beyond Standard Model physics
- Many frontiers of improvement
	- \blacktriangleright Data sample size
	- Improved analysis techniques and reduced systematic uncertainties
	- \blacktriangleright Accurate physics models

- **I** Search for lapton-flavor violation in $τ → ℓφ$ [\[arXiv:2305.04759\]](https://doi.org/10.48550/arXiv.2305.04759)
- Fest lepton-flavor universality in $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ [\[TAU 2023\]](https://indico.cern.ch/event/934666/contributions/4155576/attachments/2192153/3705262/epiphay_2021_tau_lifetime.pdf)
- Searches for heavy neutrino in τ decays [\[PRL 131 \(2023\) 211802\]](https://doi.org/10.1103/PhysRevLett.131.211802)
- ► Michelle Parameters in $\tau^- \to \mu^0 \bar{\nu}_\mu \nu_\tau$ Decays [\[PRL 131 \(2023\) 021801\]](https://doi.org/10.1103/PhysRevLett.131.021801)
- **IDEREFALL EXECUTE:** Electric Dipole Moment of the τ [\[JHEP 11 \(2022\)\]](https://doi.org/10.1007/JHEP04(2022)110)

- **I** Long-lived spin-0 mediator in $b \rightarrow s$ [\[PRD 108 \(2023\) L111104\]](https://doi.org/10.1103/PhysRevD.108.L111104)
- Dark Higgsstrahlung in $\mu^+ \mu$
- **I** Axionlike particle decaying to $\gamma\gamma$ [\[PRL 125 \(2020\) 161806\]](https://doi.org/10.1103/PhysRevLett.125.161806)
- Dark leptophilic scalar in association with $\tau^-\tau$

Belle and Belle II are leading τ and dark sector searches

- **Precision measurements of** τ **properties**
- \blacktriangleright Various studies of Standard Model parameters
- ▶ Searches for Beyond Standard Model physics
- \blacktriangleright Many frontiers of improvement
	- \blacktriangleright Data sample size
	- Improved analysis techniques and reduced systematic uncertainties
	- \blacktriangleright Accurate physics models

Further analysis in τ physics

- Search for lapton-flavor violation in $\tau \to \ell \phi$ [\[arXiv:2305.04759\]](https://doi.org/10.48550/arXiv.2305.04759)
- Fest lepton-flavor universality in $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ [\[TAU 2023\]](https://indico.cern.ch/event/934666/contributions/4155576/attachments/2192153/3705262/epiphay_2021_tau_lifetime.pdf)
- Searches for heavy neutrino in τ decays [\[PRL 131 \(2023\) 211802\]](https://doi.org/10.1103/PhysRevLett.131.211802)
- ► Michelle Parameters in $\tau^- \to \mu^0 \bar{\nu}_\mu \nu_\tau$ Decays [\[PRL 131 \(2023\) 021801\]](https://doi.org/10.1103/PhysRevLett.131.021801)
- Electric Dipole Moment of the τ [\[JHEP 11 \(2022\)\]](https://doi.org/10.1007/JHEP04(2022)110)

- Long-lived spin-0 mediator in $b \rightarrow s$ [\[PRD 108 \(2023\) L111104\]](https://doi.org/10.1103/PhysRevD.108.L111104)
- Dark Higgsstrahlung in $\mu^+\mu$ [−] [\[PRL 130 \(2023\) 071804\]](https://doi.org/10.1103/PhysRevLett.130.071804)
- Axionlike particle decaying to $\gamma\gamma$ [\[PRL 125 \(2020\) 161806\]](https://doi.org/10.1103/PhysRevLett.125.161806)
- Dark leptophilic scalar in association with $\tau^{-} \tau$

[\[arXiv:2207.07476\]](https://doi.org/10.48550/arXiv.2207.07476)

Backup

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^*-\rho_{3\pi}^*)}
$$

- Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_\tau$
	- \blacktriangleright M_{\min} distribution ends at m_{τ}
	- \triangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		-
	- -
- \blacktriangleright Fit to M_{min} distribution
- ▶ Belle II provides World's most precise result

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_\tau
$$

- ► Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_{\tau}$
	- $\blacktriangleright M_{\min}$ distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \triangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		-
	- -
- \blacktriangleright Fit to M_{min} distribution
- ▶ Belle II provides World's most precise result

$$
\mathcal{M}_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - \mathit{E}^*_{3\pi})(\mathit{E}^*_{3\pi} - \mathit{p}^*_{3\pi})} < m_\tau
$$

- ► Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_{\tau}$
	- \blacktriangleright M_{\min} distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		- \blacktriangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- \triangleright Calibrated using D^0 → Kπ standard candle
- Fit to M_{min} distribution
- ▶ Belle II provides World's most precise result

$$
M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - \rho_{3\pi}^*)} < m_\tau
$$

- ► Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_{\tau}$
	- \blacktriangleright M_{\min} distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		- \triangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle
- Fit to M_{min} distribution
- ▶ Belle II provides World's most precise result

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^*-\rho_{3\pi}^*)}
$$

- ► Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_{\tau}$
	- \blacktriangleright M_{\min} distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		- \blacktriangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle
- \blacktriangleright Fit to M_{min} distribution
- Belle II provides World's most precise result

$$
M_{\min}=\sqrt{M_{3\pi}^2+2(\sqrt{s}/2-E_{3\pi}^*)(E_{3\pi}^*-\rho_{3\pi}^*)}
$$

- ► Pseudomass method in $\tau^- \to \pi^- \pi^+ \pi^+ \nu_{\tau}$
	- \blacktriangleright M_{\min} distribution ends at m_{τ}
	- \blacktriangleright Smeared by resolution and initial and final state radiation
- \blacktriangleright Accuracy determined by
	- \triangleright Beam energy $\sqrt{s}/2$
		- \blacktriangleright Calibrated using $B\bar{B}$ events
	- \blacktriangleright Final-state particle momentum
		- ► Calibrated using $D^0 \to K\pi$ standard candle
- \blacktriangleright Fit to M_{min} distribution
- Belle II provides World's most precise result

- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
	- \triangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS
- I Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \triangleright Fit partial-wave model to 7-dimensional angular and
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
	- \blacktriangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \triangleright Fit partial-wave model to 7-dimensional angular and
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

- \triangleright Dominated by $a_1(1260)^-$ → $\rho^0 \pi^-$ decay
	- **Parameters of** $a_1(1260)$ **poorly known**
		- ► CLEO II measured twice larger width in τ decays compared to other experiments
	- \blacktriangleright Also other contributions possible
		- \triangleright a₁(1420) resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
	- \blacktriangleright Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [\[PRD 61 \(1999\) 012002\]](https://doi.org/10.1103/PhysRevD.61.012002)

Simulated $m_{3\pi}$ spectrum

- \blacktriangleright 1-prong decays on tag side
- Achieve high efficiency: 32%
- \blacktriangleright Maintain low impurity: 18%
	- A Main background from $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_\tau$

\triangleright Dominant a₁(1260) signal in 1⁺⁺[ρ (770)π]_S wave

- \triangleright Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**
- \triangleright [Novel "freed-isobar" method](https://doi.org/10.1103/PhysRevD.97.114008) not requiring knowledge of isobar resonance
	-
	- - $P(T/O)$ signal density and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]** and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]**

- \triangleright Dominant a₁(1260) signal in 1⁺⁺[ρ (770)π]_S wave
- \triangleright Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**
- [Novel "freed-isobar" method](https://doi.org/10.1103/PhysRevD.97.114008) not requiring knowledge of isobar resonance
	-
	- - $P(T/O)$ signal density and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]** and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]** and the contract of $\rho(770)$ i

- \triangleright Dominant a₁(1260) signal in 1⁺⁺[ρ (770)π]_S wave
- \triangleright Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**
- [Novel "freed-isobar" method](https://doi.org/10.1103/PhysRevD.97.114008) not requiring knowledge of isobar resonance
	-
	- - $P(T/O)$ signal density and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]** and the contract of $\rho(770)$ in clean density and the contract of $m_{3\pi}$ **[GeV]**

- \triangleright Dominant a₁(1260) signal in 1⁺⁺[ρ(770)π]_S wave
- \triangleright Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**
- \triangleright [Novel "freed-isobar" method](https://doi.org/10.1103/PhysRevD.97.114008) not requiring knowledge of isobar resonance
	- Allows to measure also amplitude of $\pi\pi$ subsystem
	- \triangleright Clear ρ (770) signal
		- \rightarrow Precision measurement of $\rho(770)$ in clean

- \triangleright Dominant a₁(1260) signal in 1⁺⁺[ρ(770)π]_S wave
- \triangleright Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
	- **► First confirmation of COMPASS measurement**
- \triangleright [Novel "freed-isobar" method](https://doi.org/10.1103/PhysRevD.97.114008) not requiring knowledge of isobar resonance
	- Allows to measure also amplitude of $\pi\pi$ subsystem
	- ► Clear ρ (770) signal
		- ear $p(r \mid r)$ signal \rightarrow Precision measurement of $p(770)$ in clean \rightarrow 0.4 0.6 0.8 1.0 1.2 1.4 1.6 environment

-
- **► Lepton Flavor Violation (LVF) is negligibly small in Standard Model +** ν **mixing (below 10⁻⁵⁰)**
- \triangleright Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
	- \rightarrow Search for lepton flavor violating decay channels

[Lepton-Flavor Violation \(LFV\) in](#page-45-0) τ Decays $\tau \rightarrow \ell \phi$ [\[arXiv:2305.04759\]](https://doi.org/10.48550/arXiv.2305.04759)

$\tau \to \ell \phi$

- ► Similar strategy as $\tau^- \to \ell \nu^0$ measurement at Belle
- \triangleright First application of untagged approach
	- \blacktriangleright Fully inclusive on tag side
- \blacktriangleright Upper limits
	- \blacktriangleright $B(\tau^- \to e^- \phi) < 23 \times 10^{-8}$ \blacktriangleright $\vec{B(\tau^{-}\to\mu^{-}\phi)}$ $< 9.7 \times 10^{-8}$

 $\tau \to \ell \alpha$, where α [is an invisible particle](#page-52-0) \sim ℓ

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ► Normalized lepton energy X_{ℓ} in τ^- rest frame
	- $\blacktriangleright \tau^- \to \ell^- \alpha$ yields fixed X_ℓ
		- \triangleright Broadened by approximation of τ^- rest frame from hadronic tag system
	- $\blacktriangleright \tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak

 \triangleright 2–14 times more stringent limit than ARGUS

 $\tau \to \ell \alpha$, where α [is an invisible particle](#page-52-0) \sim ℓ

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ► Normalized lepton energy X_{ℓ} in τ^- rest frame
	- $\blacktriangleright \tau^- \to \ell^- \alpha$ yields fixed X_ℓ
		- ► Broadened by approximation of τ^- rest frame from hadronic tag system
	- $\blacktriangleright \tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak
- \triangleright 2–14 times more stringent limit than ARGUS

 $\tau \to \ell \alpha$, where α [is an invisible particle](#page-52-0) \sim ℓ

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ► Normalized lepton energy X_{ℓ} in τ^- rest frame
	- $\blacktriangleright \tau^- \to \ell^- \alpha$ yields fixed X_ℓ
		- ► Broadened by approximation of τ^- rest frame from hadronic tag system
	- $\blacktriangleright \tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak
- \triangleright 2–14 times more stringent limit than ARGUS

 $\tau \to \ell \alpha$, where α [is an invisible particle](#page-52-0) \sim ℓ

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ► Normalized lepton energy X_{ℓ} in τ^- rest frame
	- $\blacktriangleright \tau^- \to \ell^- \alpha$ yields fixed X_ℓ
		- ► Broadened by approximation of τ^- rest frame from hadronic tag system
	- $\blacktriangleright \tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak
- \triangleright 2–14 times more stringent limit than ARGUS

- Search for peak in mass of recoil system against $\mu\mu$
- \blacktriangleright Neural network for background suppression trained on Z' signal and background
- \triangleright No significant excess observed
- \triangleright $(g 2)_u$ favored region excluded for $0.8 < M_{Z'} < 5 \,\text{GeV}/c^2$ for a fully invisible Z'

- Search for peak in mass of recoil system against $\mu\mu$
- \blacktriangleright Neural network for background suppression trained on Z' signal and background
- \blacktriangleright No significant excess observed
- \triangleright $(g 2)$ _µ favored region excluded for $0.8 < M_{Z^\prime} < 5$ GeV $/c^2$ for a fully invisible Z'

- Search for peak in mass of recoil system against $\mu\mu$
- \blacktriangleright Neural network for background suppression trained on Z' signal and background
- \blacktriangleright No significant excess observed
- \triangleright $(g 2)$ _µ favored region excluded for $0.8 < M_{Z^\prime} < 5$ GeV $/c^2$ for a fully invisible Z'

