Tau and Low-Multiplicity Decays at Belle and Belle II

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Lake Louise Winter Institute February 21, 2024

MAX P PHYSICS

- Unique and clean laboratory to study weak interaction and hadronic systems
- Third-generation lepton potentially sensitive to Beyond Standard Model physics
- Precision measurement of τ requires τ factory
 - \blacktriangleright Belle : 900 M au pairs produced ($\mathcal{L}pprox$ 1 ab $^{-1}$
 - lacksquare Belle II: 400 $\mathrm{M}~ au$ pairs produced ($\mathcal{L}pprox$ 0.4 ab $^{-1}$

- Unique and clean laboratory to study weak interaction and hadronic systems
- Third-generation lepton potentially sensitive to Beyond Standard Model physics
- Precision measurement of τ requires τ factory
 - Belle : 900 M τ pairs produced ($\mathcal{L} \approx 1 \text{ ab}^{-1}$)
 - Belle II: 400 M τ pairs produced ($\mathcal{L} \approx 0.4 \, \mathrm{ab}^{-1}$)

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
 Pseudomass method in τ⁻ → π⁻π⁻π⁺ν_τ
 M_{min} distribution ends at m_τ
 Smeared by resolution and initial and final state radiation
 - - radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - \blacktriangleright Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - Calibrated using $D^0 \rightarrow K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Final-state particle momentum
 - Calibrated using $D^0 o K\pi$ standard candle
- Belle II provides World's most precise result

• $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

- $\pi^-\pi^-\pi^+$ system forms meson resonances
- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

- $\pi^-\pi^-\pi^+$ system forms meson resonances
- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - a1(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Narrow a₁(1420) signal in intensity of 1⁺⁺[f₀(980)π]_P wave

First confirmation of COMPASS measurement

- Narrow a₁(1420) signal in intensity of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement

- Lepton Flavor Violation (LVF) is negligibly small in Standard Model + ν mixing (below 10⁻⁵⁰)
- > Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - Search for lepton flavor violating decay channels

$au^- ightarrow \ell^- V^0$

- ▶ Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- Consider 1-prong and 3-prong decays on tag side
- Multivariate analysis (BDT) to select signal

Signal region defined by

- $M_{\ell V^0} = m_{ au}$ due to missing neutrino
- $\Delta E = E^*_{\ell V^0} \sqrt{s}/2 = 0$ upon radioactive effects
- ▶ World's best upper limit for 8/10 channels
 - $B(\tau^{-} \to e^{-}V^{0}) < (1.7-2.4) \times 10^{-8}$
 - $B(\tau^- \to \mu^- V^0) < (1.7-4.3) \times 10^{-8}$

$\tau^- \to \ell^- V^0$

- ▶ Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- Consider 1-prong and 3-prong decays on tag side
- Multivariate analysis (BDT) to select signal
- Signal region defined by
 - $M_{\ell V^0} = m_{ au}$ due to missing neutrino
 - $\Delta E = E^*_{\ell V^0} \sqrt{s}/2 = 0$ upon radioactive effects
- ► World's best upper limit for 8/10 channels

$$B(\tau^{-} \to e^{-}V^{0}) < (1.7-2.4) \times 10^{-}$$

 \blacktriangleright $B(au^-
ightarrow \mu^- V^0) < (1.7 extrm{-}4.3) imes 10^-$

$\tau \to \mu \mu \mu$

- Untagged: Inclusively use rest of event
- Multivariate selection yields 3× larger efficiency compared to Belle
- Upper limit
 - $B(\tau^- \to \mu^- \mu^- \mu^+) < 1.9 imes 10^{-8}$
- World's most stringent limit

$\tau \to \ell \alpha$, where α is an invisible particle

• Fixed kinematic of two-body decay for given m_{lpha}

- Characteristic for $\tau^- \rightarrow \ell^- \alpha$ signal
- ▶ Different from Standard Model $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ decays

Dark Sector Searches at Belle II

- Dark sector physics
 - ➡ Low multiplicity events
- L1 trigger for low multiplicity events
 - Single muon, track, photon
 - Displaced-vertex trigger under study
- Well known initial condition at B factories important for dark sector searches
- Belle II is sensitive to direct production of MeV to GeV mediators

Searches for the $L_{\mu} - L_{\tau}$ Gauge Boson Z'

- ▶ New gauge boson Z' couples only to 2^{nd} and 3^{rd} generation of leptons $(L_{\mu} L_{\tau})$
- Coupling to μ , τ , ν_{μ} , ν_{τ} with strength g'
 - Decays visibly and invisibly
 - Decays to dark matter χ could be dominant

Searches for $Z' \rightarrow \text{invisible}$

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- ► (g 2)_µ favored region excluded for 0.8 < M_{Z'} < 5 GeV/c² for a fully invisible Z'

Searches for $\overline{Z'} \rightarrow \text{invisible}$

- \blacktriangleright Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- $\blacktriangleright\,$ Search for peak in mass of recoil system against $\mu\mu$
- $\blacktriangleright \ \tau$ decays to single charged particle + neutrals
 - ➡ Suppress background from four leptons
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptonic scalar (S)

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- Search for peak in mass of recoil system against $\mu\mu$
- $\blacktriangleright \ \tau$ decays to single charged particle + neutrals
 - Suppress background from four leptons
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptonic scalar (S)
 - m_S probed for the first time above $6.5 \,\mathrm{GeV}/c^2$
 - World-leading limits for ALPs

Dark Sector Searches in $Z' \rightarrow \tau \tau$

- Search for peak in mass of recoil system against $\mu\mu$
- $\blacktriangleright \ \tau$ decays to single charged particle + neutrals
 - Suppress background from four leptons
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptonic scalar (S)
 - m_S probed for the first time above $6.5 \,\text{GeV}/c^2$
 - World-leading limits for ALPs

Dark Sector Searches in $Z' \rightarrow \mu \mu$

- Search for peak in opposite-charge di-muon mass
- First upper limit for scalar model from a explicit search
- Upper limits on Z' already competitive
- Exclude Z' and scalar explanations for $(g 2)_{\mu}$ over wide mass range

Dark Sector Searches in $Z' \rightarrow \mu \mu$

- Search for peak in opposite-charge di-muon mass
- First upper limit for scalar model from a explicit search
- Upper limits on Z' already competitive
- Exclude Z' and scalar explanations for (g 2)_µ over wide mass range

- Belle and Belle II are leading τ and dark sector searches
 - Precision measurements of τ properties
 - Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

Further analysis in au physics

- \blacktriangleright Search for lapton-flavor violation in $au o \ell \phi$
- Test lepton-flavor universality in $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$
- Searches for heavy neutrino in au decays
- $lacksim {
 m Michelle}$ Parameters in $au^- o \mu^0 ar
 u_\mu
 u_ au$ Decays [PRL 131 (2023) 021801
- Electric Dipole Moment of the τ

Further dark-sector searches

- Long-lived spin-0 mediator in b
 ightarrow s
- Dark Higgsstrahlung in $\mu^+\mu^-$
- Axionlike particle decaying to $\gamma\gamma$
- Dark leptophilic scalar in association with au^-

- Belle and Belle II are leading τ and dark sector searches
 - Precision measurements of τ properties
 - Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

Further analysis in au physics

- lacksim Search for lapton-flavor violation in $au o \ell \phi$
- Test lepton-flavor universality in $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$
- Searches for heavy neutrino in au decays
- Michelle Parameters in $au^- o \mu^0 ar{
 u}_\mu
 u_ au$ Decays [PRL 131 (2023) 021801]
- Electric Dipole Moment of the au

[arXiv:2305.04759]

- [TAU 2023]
- [PRL 131 (2023) 211802]

[JHEP 11 (2022)]

• Dark leptophilic scalar in association with $\tau^- \tau^+$

Long-lived spin-0 mediator in $b \rightarrow s$

Dark Higgsstrahlung in $\mu^+\mu^-$

Axionlike particle decaying to $\gamma\gamma$

Further dark-sector searches

[PRD 108 (2023) L111104]

[PRL 130 (2023) 071804]

[PRL 125 (2020) 161806]

[arXiv:2207.07476]

Backup

	• $\tau^- \rightarrow \ell^- V^0$
	$ au au o \ell \phi$
	$\blacksquare \ \tau \rightarrow \ell \alpha$, where α is an invisible particle
14	Searches for $Z' \rightarrow invisible$

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$

- M_{\min} distribution ends at $m_{ au}$
- Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB events
 - Final-state particle momentum
 - ullet Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB events
 - Final-state particle momentum
 - ullet Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s/2}$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - Calibrated using $D^0 \to K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

$$M_{
m min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ▶ Pseudomass method in $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$
 - $M_{
 m min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - Calibrated using BB
 events
 - Final-state particle momentum
 - ▶ Calibrated using $D^0 \to K\pi$ standard candle
- Fit to M_{\min} distribution
- Belle II provides World's most precise result

• $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- o
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - \blacktriangleright CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

> $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- \rightarrow
 ho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

> $\pi^-\pi^-\pi^+$ system forms meson resonances

- Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Simulated $m_{3\pi}$ spectrum

- ► 1-prong decays on tag side
- ► Achieve high efficiency: 32 %
- ▶ Maintain low impurity: 18%
 - Main background from $\tau^- \rightarrow \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$

• Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave

- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear ho(770) signal
 - Precision measurement of ρ(770) in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - ► First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Clear $\rho(770)$ signal
 - Precision measurement of ρ(770) in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Clear $\rho(770)$ signal
 - Precision measurement of ρ(770) in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- <u>Novel "freed-isobar" method</u> not requiring knowledge of isobar resonance
 - \blacktriangleright Allows to measure also amplitude of $\pi\pi$ subsystem
 - Elear $\rho(770)$ signal
 - ⇒ Precision measurement of $\rho(770)$ in clean environment

- Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow a₁(1420) signal in intensity and phase of 1⁺⁺[f₀(980)π]_P wave
 - ► First confirmation of COMPASS measurement
- <u>Novel "freed-isobar" method</u> not requiring knowledge of isobar resonance
 - Allows to measure also amplitude of $\pi\pi$ subsystem
 - Clear $\rho(770)$ signal
 - Precision measurement of $\rho(770)$ in clean environment

- Ar Agait
- Lepton Flavor Violation (LVF) is negligibly small in Standard Model + ν mixing (below 10⁻⁵⁰)
- > Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - Search for lepton flavor violating decay channels

Lepton-Flavor Violation (LFV) in au Decays $\tau^{-} \rightarrow \ell^{-} V^{0}$

Lepton-Flavor Violation (LFV) in au Decays $_{ au ightarrow \ell\phi}$

$\tau \to \ell \phi$

- $\blacktriangleright\,$ Similar strategy as $\tau^- \to \ell \, V^0$ measurement at Belle
- First application of untagged approach
 - Fully inclusive on tag side
- Upper limits
 - $\blacktriangleright B(\tau^- \to e^- \phi) < 23 \times 10^{-8}$
 - $B(\tau^- \to \mu^- \phi) < 9.7 imes 10^{-8}$

Tau and Low-Multiplicity Decays at Belle and Belle II

 $au
ightarrow \ell lpha$, where lpha is an invisible particle

[Phys. Rev. Lett. 130 (2023) 181803]

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - $\blacktriangleright \tau^-
 ightarrow \ell^- lpha$ yields fixed X_ℓ
 - Broadened by approximation of \(\tau^-\) rest frame from hadronic tag system
 - $au^-
 ightarrow \ell^- ar
 u_\ell
 u_ au$ yields broad peak

2–14 times more stringent limit than ARGUS

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

[Phys. Rev. Lett. 130 (2023) 181803] 74+Ay>it

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak
- 2–14 times more stringent limit than ARGUS

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

$\tau \to \ell \alpha$, where α is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

[Phys. Rev. Lett. 130 (2023) 181803]

 $\tau \rightarrow \ell \alpha$, where α is an invisible particle

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_α characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $\tau^-
 ightarrow \ell^- \bar{
 u}_\ell
 u_{ au}$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

10 / 11

Searches for $Z' \rightarrow \text{invisible}$

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- ► (g 2)_µ favored region excluded for 0.8 < M_{Z'} < 5 GeV/c² for a fully invisible Z'

Searches for $\overline{Z'} \rightarrow \text{invisible}$

- \blacktriangleright Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

Searches for $Z' \rightarrow \text{invisible}$

- Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g 2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

