

CKM and flavour at Belle II

Jim Libby

Indian Institute of Technology Madras

Outline

- Belle II
- Highlights so far
 - Lepton flavour:
 - tau physics highlights
 - B physics highlights
 - CP violation
 - Tests of lepton-flavour universality
 - Evidence for $B^+ \rightarrow K^+ v v$
- Prospects

Belle II

Will the next generation perform as well as the first?

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

• SuperKEKB + Belle II@KEK, Tsukuba

- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
- World record 4.7×10³⁴ cm⁻²s⁻¹
- Target 6×10³⁵ cm⁻²s⁻¹
- So far integrated 362 fb⁻¹ at Y(4S)
- + 42 fb⁻¹ off-resonance to characterize continuum

https://www.quarked.org/

τphysics

Tau physics

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
 - Any observation of lepton-flavour violation in $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow l\phi$ etc **new physics**
 - SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay
- Also, precision measurements of lepton universality in lepton decay, Vus, moments, lifetime and mass

e¯,μ¯,d,s

 $\bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{u}, \bar{u}$

τ mass measurement

- Fundamental parameter of the standard model
 - Important input to lepton-flavour universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1+\delta_W)(1+\delta_\gamma)} \quad \text{(Ss are radiative corrections)}$$

• We use the pseudomass variable to determine mass

- Fit to distribution with analytic form that accounts for ISR and resolution
- Knowing the scale key: beam energy (from E_B*) and momentum (from D mass)

τ mass measurement

World's most precise measurement to date - dominant systematics from beam energy and momentum scale

$\tau \rightarrow 3\mu$ – lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency – multivariate
- Cut 'n' count in 2D plane of
 - $M_{3\mu}$ and $\Delta E = E_{3\mu} E_{beam}$ (in c.m.)
 - Sideband derived background estimate $0.5^{+1.4}_{-0.5}$ events
- One event observed
- World best limit
 - BF < 1.9×10⁻⁸ (90% c.l.)
- Area of competition
 - <u>LHCb</u> BF < 4.1×10⁻⁸ (Run 1 only)
 - <u>CMS</u> BF < 2.9×10⁻⁸ (Run 1+2)

3.8.2024

Flavour tagging improvements

Graph-neural-network approach has improved our tagging by 18% $\epsilon(1-2\omega) = 37.4\%$

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$
- Reconstructing $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output
- sin $2\phi_1 = 0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \to c \bar{c} s$ result

Lepton flavour/universality violation and rare decays

Hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - $B \rightarrow D^{(*)0}\,m\pi^{\pm}n\pi^{0}$, where $m{\geq}1$ $n \geq 0$
 - BaBar PRL 92 071802
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible B⁺ → K⁺ T⁻
 - <u>Comput. Softw. Big Sci. 3 (2019) 1, 6</u>
- Total efficiency < 1% but a powerful tool
- Requires calibration

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$

 - A complementary alternative to $R(D^{(*)})$
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow Xlv$ background
- Background templates calibrated to control samples and sidebands

 Background templates calibrated to control samples and sidebands

$B^+ \to K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements 3rd gen
 - $B(B \rightarrow K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$
- Challenging experimentally
 - Low branching fraction with large background
 - No peak two neutrinos leads to no good kinematic constraint

$B^+ ightarrow K^+ u \overline{ u}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - 1. preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity
 - 4. BDT2 fit extraction variable in bins of $\nu \bar{\nu}$ mass-squared q²
 - Hadronic tag: single BDT for fit
 - key variable any additional calorimeter energy other than K+tag

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
 - corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by offresonance

(3 bins in q_{rec}^2) x (4 bins in μ (BDT₂))

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

(3 bins in q_{rec}^2) x (4 bins in $\mu(BDT_2)$)

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

BaBar Symposium

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Background validation example

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \rightarrow K^+ K^0_S K^0_S$ show good modelling
 - generous systematics assigned
- Similar studies for $B^+ \rightarrow K^+ n \bar{n}, B^+ \rightarrow K^+ K_L^0 K_S^0$

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
 - Beam conditions
- Since summer 2022 until Feb 2004 shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
 - two-layer pixel detector installed
- Path to 2 \times 10³⁵ cm $^{-2}s^{-1}$ but new final focus to go beyond
 - Proposed upgrade from 2028+
 - see C. Checci and M. Roney next

Goals with current data to a few inverse ab⁻¹

- Semileptonic decay:
 - $V_{\rm cb}$ can we make progress on the inclusive vs. exclusive tension
 - KEK report in preparation
 - R(D)-R(D*)
- Electroweak penguin
 - Missing energy modes like $B \rightarrow K\tau\tau$ and Kvv
- CP violation
 - α and the **gluonic penguins**
- tau
 - LFV and precision
- Charm
 - final states with neutrals, e.g., $D \rightarrow \pi^0 \pi^0$
- Quarkonium
 - Y(10753) scan and isospin partners (ISR and *B* decay)
- Dark sector and low multiplicity
 - dark photon and $e^+e^- \rightarrow \pi^+\pi^-$

Our <u>Snowmass</u> <u>submission</u> is the most up to date prospects document

Conclusion

- e⁺e⁻ has an important role to play in the future of flavour
 - Belle II is catching up to first generation sample size, we are producing competitive and exciting results
 - <u>35 papers</u> and 12 preliminary results with a paper in preparation
 - More before the summer with the Run 1 data
 - A lot more to come once we enter the "10³⁵ era" of Run 2 which is just starting