Belle II physics: a brief tour

Jim Libby
Indian Institute of Technology Madras

Outline

1. The why: flavour physics in $e^{+} e^{-}$and Belle II
2. The what: general methods and recent highlights

- B-physics primer
- B-physics
- Time-dependent $C P$ violation example
- Evidence for $B^{+} \rightarrow K^{+} v v$
- More than B physics
- 七 lepton-flavour violation
- hadronic cross sections for hadronic vacuum polarization to g-2

3. The how: a manager's guide to how to do an analysis

Part I: the why

$\mathrm{e}^{+} \mathrm{e}^{-}$flavour physics and Belle II

Why flavour physics? - history of discovery

- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model

```
- up (u)
- down (d)
- strange (s)
```

- An allowed but rare decay such as

$$
K_{L}^{0}(s \bar{d}) \rightarrow \mu^{+} \mu^{-}
$$

was predicted but not seen!

Why flavour physics? - history of discovery

CKM matrix

- Two by two mixing matrix proposed by Cabibbo
- Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3×3 unitary complex matrix
- 4 parameters
- 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

Visualising CP violation: the unitarity triangle

$$
\begin{gathered}
A \lambda^{3}(\rho-i \eta) \\
A \lambda^{2} \\
1
\end{gathered}+O\left(\lambda^{4}\right) \quad \lambda=\sin \theta_{c}=0.22
$$

2) Exploit unitarity (1 ${ }^{\text {st }}$ and $3^{\text {rd }}$ col.) $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
3)

$$
\begin{aligned}
& \phi_{1}=\beta \\
& =\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \simeq \arg \left(\frac{1}{1-\rho-i \eta}\right)
\end{aligned}
$$

Over constraint - loop sensitivity

Tree level only

Loop-level only

Why B physics at the $\mathrm{Y}(4 \mathrm{~S})$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum

Why B physics at the $Y(4 S)$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
- Low average multiplicity - neutral reconstruction
- Constrained kinematics - good missing momentum reconstruction
- Correlated $B^{0} \bar{B}^{0}$ - high flavour-tagging efficiency
- Open trigger - 100\% efficient for almost all B decays

Why B physics at the $Y(4 S)$?

- The process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
- Low average multiplicity - neutral reconstruction
- Constrained kinematics - good missing momentum reconstruction
- Correlated $B^{0} \bar{B}^{0}$ - high flavour-tagging efficiency
- Open trigger - 100\% efficient for almost all B decays
- Disadvantages compared to proton-proton
- Cross section - 150,000 times smaller
- No B_{s}, B_{c}, or Λ_{b} produced - can run at $Y(5 S)$ for B_{s}
- No boost in the c.m. frame - partially overcome by the asymmetric beams

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab ${ }^{-1}$ sample
- World record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target $6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- So far $362 \mathrm{fb}^{-1}$ at $Y(4 \mathrm{~S})$
- + $42 \mathrm{fb}^{-1}$ off-resonance to characterize continuum

Detectors and data samples

- Belle + BaBar collected
$0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab-1 sample
- World record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target $6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- So far $362 \mathrm{fb}^{-1}$ at $Y(4 \mathrm{~S})$
- + $42 \mathrm{fb}^{-1}$ off-resonance to characterize continuum

Part II: the what

Recent highlights

B-factory analysis essentials 1 beam constrained kinematics

Reconstructed B 4-momentum

B-factory analysis essentials 2 continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
- isotropic distribution of particles

vs.

- In the c.m. frame continuum qq back-to-back
- jetlike distribution of particles

B-factory analysis essentials 2 continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
- isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
- jetlike distribution of particles
- Shape variables, e.g., thrust and Fox-Wolfram moments, help distinguish topologies
- Ideal task for machine-learning
- Output oft used as a fit variable

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
- $B \rightarrow D^{(*) 0} m \pi^{ \pm} n \pi^{0}$, where $m \geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
- $B \rightarrow D^{(*) 0} m \pi^{ \pm} n \pi^{0}$, where $m \geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{T}^{-} \mu^{+}$
- Comput. Softw. Big Sci. 3 (2019) 1, 6
- Total efficiency < 1% but a powerful tool
- Requires calibration

B-factory analysis essentials 4 vertexing and flavour tagging

B-factory analysis essentials 4 vertexing and flavour tagging

B-factory analysis essentials 4 vertexing and flavour tagging

Time-dependent $C P$ violation - $\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} S$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$

Time-dependent $C P$ violation - $\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} s$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$

- Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$ we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$ sample
- 3 D fit to $\Delta \mathrm{E}, \mathrm{m}_{\mathrm{BC}}$ and continuum suppression output

Time-dependent $C P$ violation- $\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} s$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$
- Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$ we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$ sample
- 3D fit to $\Delta E, m_{B C}$ and continuum suppression output
- $\sin 2 \phi_{1}=0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \rightarrow c \bar{c} s$ result

$B^{+} \rightarrow K^{+} v \bar{v}$: Motivation

- Well known in SM but very sensitive to BSM enhancements - $3^{\text {rd }}$ gen
- $B\left(B \rightarrow K^{+} v v\right)=(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]

$B^{+} \rightarrow K^{+} v \bar{v}$: Motivation

- Well known in SM but very sensitive to BSM enhancements - $3^{\text {rd }}$ gen
- $B\left(B \rightarrow K^{+} v v\right)=(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]
- Challenging experimentally
- Low branching fraction with large background
- No peak - two neutrinos leads to no good kinematic constraint

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag
- Use event variables to suppress background
- Inclusive:

1. preselect events where missing momentum and signal kaon well reconstructed

2. First boosted decision tree (BDT1): 12 variables
3. Second BDT2: 35 variables -3 times sensitivity

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4% efficiency)
- many common features except tag
- Use event variables to suppress background
- Inclusive:

1. preselect events where missing momentum and signal kaon well reconstructed

2. First boosted decision tree (BDT1): 12 variables
3. Second BDT2: 35 variables -3 times sensitivity
4. BDT2 fit extraction variable in bins of $v \bar{v}$ mass-squared $-q^{2}$

- Hadronic tag: single BDT for fit
- key variable any additional calorimeter energy other than K+tag

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
- corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by offresonance

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Inclusive signal extraction

$\left(3\right.$ bins in $\left.q_{\text {rec }}^{2}\right) \times\left(4\right.$ bins in $\mu\left(\right.$ BDT $\left.\left._{2}\right)\right)$

- Continuum template constrained by offresonance

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Efficiency validation

Rest of the event

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}:$
 $>90 \%$ background from $B \rightarrow D\left(K^{+} X\right) \mid v+B \rightarrow D\left(K_{L} X\right) K^{+}$

- KX system agrees well between data and MC
- Prompt K^{+}production studied using prompt π^{+}from $\mathrm{B}^{+} \rightarrow \pi^{+} X$ decays
- Systematic uncertainties on decay branching fractions, enlarged for $D \rightarrow K_{L} X$ and $B \rightarrow D^{* *} \mid v$

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}$: Results

$\mathrm{BF}_{\text {inc }}=(2.8 \pm 0.5$ (stat) ± 0.5 (syst) $) \times 10^{-5}$
$\mathrm{BF}_{\text {had }}=\left(1.1_{-0.8}^{+0.9}(\text { stat })_{-0.5}^{+0.8}(\right.$ syst $\left.)\right) \times 10^{-5}$
$B F_{\text {comb }}=\left(2.4 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\right.$ syst $\left.)\right) \times 10^{-5}$

$B^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Results

$\mathrm{BF}_{\text {inc }}=(2.7 \pm 0.5$ (stat) ± 0.5 (syst) $) \times 10^{-5}$
$\mathrm{BF}_{\text {had }}=\left(1.1_{-0.8}^{+0.9}(\text { stat })_{-0.5}^{+0.8}(\right.$ syst $\left.)\right) \times 10^{-5}$
$\mathrm{BF}_{\text {comb }}=\left(2.3 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\right.$ syst $\left.)\right) \times 10^{-5}$

Combined result

Evidence @ 3.5 σ
Tension with SM $\left(0.6 \times 10^{-5}\right)$
@ 2.7。

Tau physics motivation I

- 185 standard model decay modes studied - principally hadronic final states

- Unique laboratory to study weak interaction

Tau physics motivation I

- 185 standard model decay modes studied
- principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
- Any observation of lepton-flavour violation in $\tau \rightarrow 3 \mu, \tau \rightarrow \mu \gamma, \tau \rightarrow \mid \phi$ etc new physics
- SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay

Why τ physics at the $\mathrm{Y}(4 \mathrm{~S})$?

Non Bhabha cross section in nb

- The centre-of-mass energy of the B factories process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=$ u, d, s, c a.k.a. continuum

Why τ physics at the $\mathrm{Y}(4 \mathrm{~S})$?

Non Bhabha cross section in nb

- The centre-of-mass energy of the B factories process $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ has comparable cross section to $e^{+} e^{-} \rightarrow q \bar{q}, q=$ u, d, s, c a.k.a. continuum
- Similar cross section for $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$
- 920 million tau pairs per ab^{-1} of integrated luminosity

$\tau \rightarrow \mathbf{3} \boldsymbol{\mu}$ - lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency multivariate

$\tau \rightarrow \mathbf{3} \boldsymbol{\mu}$ - lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency multivariate
- Cut ' n ' count in 2D plane of
- $\mathrm{M}_{3 \mu}$ and $\Delta \mathrm{E}=\mathrm{E}_{3 \mu}-\mathrm{E}_{\text {beam }}$ (in c.m.)
- Sideband derived background estimate $0.5_{-0.5}^{+1.4}$ events
- One event observed
- World best limit
- BF < 1.9×10^{-8} (90% c.l.)
- Area of competition
- LHCb BF < 4.1×10^{-8} (Run 1 only)
- CMS BF $<2.9 \times 10^{-8}$ (Run 1+2)

...away from heavy flavour muon g-2

Plot from A. Keshavarzi talk at Lattice 2023

...away from heavy flavour muon g-2

Plot from A. Keshavarzi talk at Lattice 2023

$$
\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)
$$

Muon anomalous magnetic moment

$$
a_{\mu}=\frac{g-2}{2}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{EW}}+a_{\mu}^{\mathrm{QCD}}
$$

$$
\begin{aligned}
& \text { Hadron contribution term } \\
& \longrightarrow a_{\mu}^{\mathrm{QCD}}=a_{\mu}^{\mathrm{HVP}}+a_{\mu}^{\mathrm{HLbL}}
\end{aligned}
$$

...

Leading-order HVP rerm
$a_{\mu}^{\text {HVP,LO }}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{d s}{s} R(s) K(s) \quad \begin{gathered}\text { Hadronic R-ratio } \\ \longrightarrow\end{gathered}$
$\longrightarrow R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$ $2^{\text {nd }}$ largest contribution to the hadronic vacuum polarization estimate as region below 1 GeV in
 c.m. energy dominates
$\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

- Initial-state radiation technique wide invariant mass range
- Partial Run 1 data set - $191 \mathrm{fb}^{-1}$
- Selection via kinematic fits
- Key challenge is π^{0} efficiency
- Custom determination using ω decay
- Background control samples for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \gamma_{I S R}, e^{+} e^{-} \rightarrow$ $q \bar{q} \gamma_{I S R}$ and $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \gamma_{I S R}$

Signal process : $e^{+} e^{-} \rightarrow \gamma_{\mathrm{ISR}} \pi^{+} \pi^{-} \pi^{0}(\rightarrow \gamma \gamma)$
Signal spectrum
Efficiency

$$
\frac{d N_{\mathrm{signal}}}{d m}=\sigma_{e e \rightarrow 3 \pi} \cdot \varepsilon \cdot \frac{d \mathcal{L}_{\mathrm{eff}}}{d m}
$$

3π mass Cross section

$\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

Source		
	$0.62-1.05 \mathrm{GeV} / c^{2}$	
Trigger	0.1	(-0.09)
ISR photon detection	0.7	$(+0.15)$
Tracking	0.8	(-1.35)
π^{0} detection	1.0	(-1.43)
Kinematic fit $\left(\chi^{2}\right)$	0.6	$(+0.0)$
Event selection	0.2	(-1.90)
Generator	1.2	
Integrated luminosity	0.6	
Radiative corrections	0.5	0.2
MC statistics	$0.3-0.5$	
Background subtraction	$0.7-15$	
Unfolding	$2.2-15$	
Total uncertainty		
(Total correction $\left.\varepsilon / \varepsilon_{\mathrm{MC}}-1\right)$	(-4.61)	

$$
a_{\mu}^{3 \pi}=(49.02 \pm 0.23 \pm 1.07) \times 10^{-10}
$$

2.6σ tension with BaBar

Part III: the how

A manager's guide to how to do an analysis

Working groups: an analysis' home

- Eight working groups
- Half are related to B physics
- The rest not
- An analysis must present regularly in WG until it reaches a level of maturity for a 'Full status report'
- see details in a couple of slides
- Important:

1. a new analysis should present just the idea or very early studies in the WG - this will help align with other efforts and ensure the physics motivation is strong
2. think whether your analysis will benefit from adding Belle data early on

- i.e., not done at Belle or better technique

3. don't present a fully formed analysis at the first presentation

- This can lead to disappointment and delay when the conveners and experts in the group point out problems
- Semileptonic and missing energy
- Vxb and lepton universality
- Electroweak penguin and rare decay
- Lepton flavour violation
- Time-dependent CP violation
- Hadronic B decay
- inc. direct CPV
- Charm
- τ physics
- Quarkonium
- Dark sector and low multiplicity

Working group (WG)
Examination/review
Review committee (RC)
Collaboration wide review (CWR)
\rightarrow Journal

Analysis development

- frequent
presentations

After 48 hr display
final checks by RC and PC reader
Submission approval

One or more round(s) of journal review
Responses and changes approved by RC chair, PC reader and Physics coordinator

When is an analysis ready for WG full status?

Six questions to which the answer should be yes

1. Is the selection procedure optimized?
2. Is the observable extraction method complete and shown to be unbiased and give correct coverage? If biased, is how it will be corrected defined?
3. Have control samples and sidebands been used to test datasimulation agreement?
4. Are the dominant sources of systematic uncertainty identified and estimated?
5. Is the signal-box opening strategy defined?
6. Is it all comprehensively documented in the Belle II note?

Working group (WG)
Examination/review
Review committee (RC)
Collaboration wide review (CWR)
\rightarrow Journal

Analysis development

- frequent
presentations

After 48 hr display
final checks by RC and PC reader
Submission approval

One or more round(s) of journal review
Responses and changes approved by RC chair, PC reader and Physics coordinator

Physics is not in a vacuum

- Data production
- preparation of data, simulation and skims
- take help from the data production liaison in each working group
- Analysis relies on software (report help fix bugs) and distributed computing
- Performance
- key inputs to analyses related to: tracking, particle ID, neutrals, event properties (e.g. luminosity and trigger) and analysis tools (e.g. tagging)
- analysts should consider working on some study if needed for their analysis
- bonus: authorship qualification
- Dedicated groups to work on generators, amplitude analyses and statistics
- The review process relies on Publication Committee
- work with the RC and PC reader

Conclusion

- A brief tour of the why, what and how of Belle II physics
- Lot's to be done with the Run 1 data + Belle
- likely standard sample until spring next year but with Release 8 and MC16rd
- Planning for Run 2
- summer 2025 onward
- Participate in
- your WG meetings,
- Physics Meeting (2130 JST on Monday) and
- reviews as WG reader, RC member and institute readers to improve our analysis

Backup

Belle Il upgrade

Belle III + ChiralSuperKEKB > 2030+

- Many plans and possibilities
- Work on a Conceptual Design Report begun to be delivered in 2023
- Followed by a Technical Design Report in 2024
- Shutdown end of

| EOI | Upgrade ideas scope and technology | Time scale |
| :--- | :--- | :--- | :--- |
| DMAPS | Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS
 developed for ATLAS ITK. | LS2 |
| SOI-DUTIP | Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI | LS2 |
| Thin Strips | Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and
 potentially the inner part of the CDC | LS2 |
| CDC | Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk | < LS2 |
| TOP | Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended
 lifetime ALD PMT, study of SiPM photosensor option | LS2 and later |
| ECL | Crystal replacement with pure Csl and APD; pre-shower; replace PIN-diodes with APD
 photosensors. | > LS2 |
| KLM | Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF | LS2 and later |
| Trigger | Take advantage of electronics technology development. Increase bandwidth, open possibility of
 new trigger primitives | < LS2 and later |
| STOPGAP | Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger | > LS2 |
| TPC | TPC option under study for longer term upgrade | > LS2 |

[^0]

2) Why t? Why Belle (II)?

Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact

Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact
- Example:
- first row unitarity of CKM matrix 'Cabibbo angle anomaly'
- $\mathrm{B}(\tau \rightarrow \mathrm{Kv}) / \mathrm{B}(\tau \rightarrow \pi v)$ proportional to $\left|\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}\right|^{2}$
- Combine with lattice QCD information to provide additional constraint

Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact
- Example:
- first row unitarity of CKM matrix 'Cabibbo angle anomaly'
- $\mathrm{B}(\tau \rightarrow \mathrm{Kv}) / \mathrm{B}(\tau \rightarrow \pi v)$ proportional to $\left|\mathrm{V}_{\text {us }} / \mathrm{V}_{\text {ud }}\right|^{2}$
- Combine with lattice QCD information to provide additional constraint
- Additionally, lepton-flavour universality and dipole moments
- Mass and lifetime important inputs to these calculations

τ mass measurement

- Fundamental parameter of the standard model
- Important input to lepton-flavour universality tests
$R_{e}=\frac{\mathcal{B}\left[\tau^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\tau}\right]}{\mathcal{B}\left[\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right]} \quad\left(\frac{g_{\tau}}{g_{\mu}}\right)_{e}=\sqrt{R_{e} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{3}}{m_{\tau}^{3}}\left(1+\delta_{W}\right)\left(1+\delta_{\gamma}\right)} \quad$ (δs are radiative corrections)

τ mass measurement

- Fundamental parameter of the standard model
- Important input to lepton-flavour universality tests

$$
R_{e}=\frac{\mathcal{B}\left[\tau^{-} \rightarrow e^{-} \overline{\bar{e}_{e}} \nu_{\tau}\right]}{\mathcal{B}\left[\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right]} \quad\left(\frac{g_{\tau}}{g_{\mu}}\right)_{e}=\sqrt{R_{e} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{3}}{m_{\tau}^{3}}\left(1+\delta_{W}\right)\left(1+\delta_{\gamma}\right)} \quad \text { (ठs are radiative corrections) }
$$

- We use the pseudomass variable to determine mass

τ mass measurement

- Fit to distribution with analytic form that accounts for ISR and resolution

τ mass measurement

- Fit to distribution with analytic form that accounts for ISR and resolution
- Knowing the scale key: beam energy (from $\mathrm{E}_{\mathrm{B}}{ }^{*}$) and momentum (from D mass)

τ mass measurement

> World's most precise measurement to date
> - dominant systematics from beam energy and momentum scale

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario
- DM weakly coupled to SM through a light mediator X :
- vector (Z'/dark photon), axion like particles (ALPs), scalar (dark Higgs) or fermions (sterile v)
- Some links to anomalies, e.g., g-2

Invisible decay of Z' to dark matter

- Search for narrow peak in the recoil mass of dimuon pairs

Invisible decay of Z' to dark matter

- Limits on Z^{\prime} coupling g' and mass
- $g_{\mu}-2$ region ruled out for masses from 0.8 to 5 GeV

Phys. Rev. Lett. 130, 231801 (2023)

Paper in preparation

$\boldsymbol{\gamma} / \phi_{3}$: power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003

Paper in preparation

Y/ $\boldsymbol{\phi}_{3}$: power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003
- Several Belle (711 fb-1) + Belle II measurements (varying sample size) - total $\mathrm{O}\left(1 \mathrm{ab}^{-1}\right)$
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}}^{0}$ hh - JHEP 02 (2022) 063
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K} \pi$ - accepted by JHEP
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} \pi^{0}$, KK - arXiv:2308.05048
- + Belle-only $D \rightarrow K \pi$ and others
- A few a^{-1} will give a good cross check of this SM parameter

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+} \pi^{0}} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle II including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K^{0} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+} \pi^{0}} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\gamma_{B^{+}}}{B^{+}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle Il including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K_{S}^{0} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$$
\begin{aligned}
B= & (14.2 \pm 0.4 \pm 0.9) \times 10^{-6} \\
& \text { Large } \pi^{0} \text { efficiency syst. }
\end{aligned}
$$

$$
A_{K^{0}}=-0.01 \pm 0.12 \pm 0.05
$$ Combination of time-dependent and time-integrated analyses

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=(-3 \pm 13 \pm 5) \%
$$

Agrees with SM. Competitive with WA: $(-13 \pm 11) \%$.


```
4) Lepton flavour/universality violation and rare decays
```


Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l \nu)}$
- A complementary alternative to $R\left(D^{(*)}\right)$
- Hadronic-tagging method with a $189 \mathrm{fb}^{-1}$ Belle II sample

Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l \nu)}$
- A complementary alternative to $R\left(D^{*}\right)$
- Hadronic-tagging method with a $189 \mathrm{fb}^{-1}$ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow X$ Iv background
- Background templates calibrated to control samples and sidebands

Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l v)}$
- A complementary alternative to D/م(*)

$R(X)=0.228 \pm 0.016$ (stat) ± 0.036 (syst)

Systematics dominated by control sample reweighting procedures First at B factories
Agrees with SM prediction and the WA R($\left.\mathrm{D}^{(*)}\right)$ values

- Background templates calibrated to control samples and sidebands

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*} \mid \mathrm{v}$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged
- Fit performed to coefficients in different form-factor parameterizations and with LQCD inputs to extract V_{cb} as well as parameters of the form-factor model
- WA BF also taken externally


```
    *)
|}\mp@subsup{V}{\textrm{cb}}{}|=(40.9\pm0.7)\times1\mp@subsup{0}{}{-3}(\textrm{CLN}
```

G. Mohanty WG3

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

- Belle $711 \mathrm{fb}^{-1}$ data sample
- Hadronic tagging - then use tag, kaon and lepton four momentum to workout recoil mass
$M_{\text {recoil }}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Belle search for $\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\tau}^{ \pm} \boldsymbol{l}^{\mp}$

- Lower bounds on branching fractions in $\mathrm{U}(1)$ leptoquark models at $\mathrm{O}\left(10^{-7}\right)$
- PRD 104, 055017 (2021)

- Belle $711 \mathrm{fb}^{-1}$ data sample
- Hadronic tagging - then use tag, kaon and lepton four momentum to workout recoil mass

$$
\begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}\right)<0.59 \times 10^{-5} \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} e^{-}\right)<1.51 \times 10^{-5} \quad \text { World } \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{-} \mu^{+}\right)<2.45 \times 10^{-5} \\
& \mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{-} e^{+}\right)<1.53 \times 10^{-5}
\end{aligned}
$$

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}$: Background validation example

- An example of a difficult background is charmless $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$, where K_{L}^{0} mesons escape detection
- has an order of magnitude larger BF than signal

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}$: Background validation example

- An example of a difficult background is charmless $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$, where K_{L}^{0} mesons escape detection
- has an order of magnitude larger BF than signal
- Dedicated studies $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ show good modelling
- generous systematics assigned
- Similar studies for $B^{+} \rightarrow K^{+} n \bar{n}, B^{+} \rightarrow$ $K^{+} K_{L}^{0} K_{S}^{0}$

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \bar{v}$: Systematic uncertainties

Source	Correction	Uncertainty type	Uncertainty size	Impact on σ_{μ}
Normalization of $B \bar{B}$ background	-	Global, 2 NP	50\%	0.88
Normalization of continuum background	-	Global, 5 NP	50\%	0.10
Leading B-decays branching fractions	-	Shape, 5 NP	$O(1 \%)$	0.22
Branching fraction for $B^{+} \rightarrow K^{+} K_{\mathrm{L}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	20\%	0.49
p-wave component for $B^{+} \rightarrow K^{+} K_{\mathrm{S}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	30\%	0.02
Branching fraction for $B \rightarrow D^{(* *)}$	-	Shape, 1 NP	50\%	0.42
Branching fraction for $B^{+} \rightarrow n \bar{n} K^{+}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	100\%	0.20
Branching fraction for $D \rightarrow K_{L} X$	$+30 \%$	Shape, 1 NP	10\%	0.14
Continuum background modeling, $\mathrm{BDT}_{\mathrm{c}}$	Multivariate $O(10 \%)$	Shape, 1 NP	100\% of correction	0.01
Integrated luminosity	-	Global, 1 NP	1\%	<0.01
Number of $B \bar{B}$	-	Global, 1 NP	1.5\%	0.02
Off-resonance sample normalization	-	Global, 1 NP	5\%	0.05
Track finding efficiency	-	Shape, 1 NP	0.3\%	0.20
Signal kaon PID	p, θ dependent $O(10-100 \%)$	Shape, 7 NP	$O(1 \%)$	0.07
Photon energy scale	-	Shape, 1 NP	0.5\%	0.08
Hadronic energy scale	-10\%	Shape, 1 NP	10\%	0.36
K_{L}^{0} efficiency in ECL	- -17%	Shape, 1 NP	8\%	0.21
Signal SM form factors	q^{2} dependent $O(1 \%)$	Shape, 3 NP	$O(1 \%)$	0.02
Global signal efficiency	-	Global, 1 NP	3%	0.03
MC statistics	-	Shape, 156 NP	$O(1 \%)$	0.52

Post-fit distributions

Upper: full fit region

Lower: most sensitive region
arXiv:2311.14647 [hep-ex]

Cross checks

- Multiple checks of the anallyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, $\mu=\mathrm{B} / \mathrm{B}_{\mathrm{SM}}$.
- Control measurement of $B^{+} \rightarrow \pi^{+} K^{0}$ decay

2023 results

1. Measurement of the Ds lifetime - world leading, arXiv: 2306.00365. Accepted
2. $Y(n S)$ dipion transitions - unique, paper in preparation
3. Search for ee $\rightarrow \omega \eta_{b}$ at 10.75 GeV - unique, paper in preparation
4. CPV in $B^{0} \rightarrow \eta^{\prime} K_{S}-$ unique, paper in preparation
5. CPV in $B^{0} \rightarrow K_{s} \Pi q$ - unique and world leading, paper in preparation
6. Improved B flavor tagging and sin2phi1 - paper in preparation
7. $R\left(D^{*}\right)$ - high profile - paper in preparation
8. $R(X)$ - high profile, unique - paper in preparation
9. Evidence for $B^{+} \rightarrow K^{+} \bar{w}$ - high profile, unique - paper in preparation
10. BF and asymmetries in $B \rightarrow \rho \gamma-$ unique, Belle + Belle II - paper in preparation
11. Search for $Z^{\prime} \rightarrow \mu \mu-$ paper in preparation
12. Energy-dependence of $B\left(^{*}\right) B\left(^{*}\right)$ bar cross section - unique - paper in preparation
13. Test of light-lepton universality in $B \rightarrow D^{*} \ell v$ decays - unique - arXiv: 2308.02023. Accepted.
14. Determination of the CKM angle γ from a combination of Belle and Belle Il results - paper in preparation
15. Measurement of CKM angle γ using GLW - Belle + Belle II, arXiv: 2308.05048
16. Measurement of CKM angle γ using GLS - Belle + Belle I, JHEP 09 (2023) 146
17. Search for long-lived spin-0 mediator in $b \rightarrow s$ transitions - world leading, arXiv: 2306.02830
18. Measurement of of the t mass - world leading, PRD 108, 032006 (2023)
19. BF and ACP in $B^{0} \rightarrow h^{+} h h^{\sigma}$ decays and isospin sum rule - world leading - paper in preparation
20. ACP in $B^{0} \rightarrow K^{0} K^{0}{ }_{S} K^{0}{ }_{S}$ - paper in preparation
21. $|\mathrm{Vcb}|$ using untagged $B \rightarrow D^{*} \ell v$ decays - competitive - paper in preparation
22. CPV in $B^{0} \rightarrow K^{0} \pi^{0}$ decays - competitive, PRL 131, 111803 (2023)
23. CPV in $B^{0} \rightarrow \boldsymbol{\phi} K^{0}{ }_{S}$ - arXiv: 2307.02802. Accepted
24. Novel method for charm flavor tagging - unique, PRD 107, 112010 (2023)
25. Search for $\tau \rightarrow \ell \boldsymbol{\phi}-$ arXiv: 2305.04759 (conf note)
26. Observation of $B \rightarrow D\left(^{*}\right) K K s$ - world leading arXiv: 2305.01321 (conf note)

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
- Beam conditions
- Since summer 2022 until last week shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
- two-layer pixel detector installed
- On target to restart SuperKEKB in December
- Path to $\mathbf{2 \times 1 0 ^ { 3 5 }} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$ but new final focus to go beyond
- Proposed upgrade from 2028+
- J. Baudot FPCP 2023

Conclusion

- $\mathrm{e}^{+} \mathrm{e}^{-}$has an important role to play and a bright future in flavour
- Belle II is catching up to first generation sample size, we are producing competitive and exciting results
- A lot more to come once we enter the " 100^{35} era"
- Not discussed today: dark sector, charm and spectroscopy
- Upgrade plans for reaching the 10s of $a b^{-1}$

[^0]: J. Baudot FPCP 2023

