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How to do Machine Learning?
Model Example 1: Neural Networks



What is Machine Learning?

Ar‘I'IfICIC|| In’relllgence
([ " M a C h i n e | ea rn i ng i S a fo rm Of Al th at The theory and development of computer systems able .

to perform tasks normally requiring human intelligence
enables a system to learn from data o
rather than through explicit /" Machine Learning

Gives computers "the ability to learn
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Deep Learning

| Machine learning algorithms

| with brain-like logical v

structure of algorithms

called artificial neural
networks
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https://levity.ai/blog/difference-machine-learning-deep-learning

Types of Machine Learning Problems (w/ ex.)

* Supervised Learning Semi-Supervised Learning Unsupervised Learning Reinforcement Learning

Classification =« Image Generation Clustering Language Models
-Particle identification -PXD background -Improved ECL Cluster -ChatGPT
-Distinguishing between overlay generation Search
signal vs. background -ECL Waveform -GNN Tracking at Belle 2

generations
Regression Anomaly Detection Anomaly Detection Time-Dependent
-Approximating -Computer Vision for -NP Detection for Dark -Self Driving Cars
Functions DQM at HYDRA Higgs at Belle 2

For better view of the landscape: https://iml-wg.github.io/HEPML-LivingReview/



https://arxiv.org/pdf/2303.00693
https://arxiv.org/pdf/2303.00693
https://indico.cern.ch/event/1191895/contributions/5333535/attachments/2668974/4625919/2023June19_CAPGAN.pdf
https://indico.cern.ch/event/1191895/contributions/5333535/attachments/2668974/4625919/2023June19_CAPGAN.pdf
https://indico.jlab.org/event/459/contributions/11393/
https://indico.jlab.org/event/459/contributions/11393/
https://indico.jlab.org/event/459/contributions/11756/attachments/9700/14154/IsabelHaide_CHEP_Talk_110523.pdf
https://indico.jlab.org/event/459/contributions/11756/attachments/9700/14154/IsabelHaide_CHEP_Talk_110523.pdf
https://indico.jlab.org/event/459/contributions/11761/attachments/9441/13689/GNN_based_TrackFinding_Belle2_LReuter.pdf
https://docs.belle2.org/record/3662/files/BELLE2-UTHESIS-2023-001.pdf
https://docs.belle2.org/record/3662/files/BELLE2-UTHESIS-2023-001.pdf
https://iml-wg.github.io/HEPML-LivingReview/

Supervised Learning

e Given a dataset with a set of
labels/indices, train your machine to
get those labels right.

o |If labels are discrete, then we
have classification

o |If labels are continuous, then we
have regression

e If not all your dataset is labeled or
you don’t have labels, then you are
semi-supervised or unsupervised
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https://www.kdnuggets.com/wp-content/uploads/mehreen_understanding_supervised_learning_theory_overview_6.png
https://www.kdnuggets.com/wp-content/uploads/mehreen_understanding_supervised_learning_theory_overview_6.png
https://www.simplilearn.com/ice9/free_resources_article_thumb/Regression_vs_Classification.jpg
https://www.simplilearn.com/ice9/free_resources_article_thumb/Regression_vs_Classification.jpg

How to do machine learning?

With a focus on supervised learning
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https://evdisp.belle2.org/

For Belle Il, data taking is the most
important task!

In general, the more data, the better.

Take shifts to help in with this part!

Run Type : physics
Run Number : Exp 26 Run 354
Generated at : 2022-05-1821:45:45



https://evdisp.belle2.org/

Data Processing

Basf2 software converts raw data to analysis-level
variables as part of processing.

ICS
p 26 Run 354
022-05-18-21:45:45

These variables are used as “features” or inputs
into our machine learning model.
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Data Processing

In general, data processing should also consider the following:

e Feature selection:
o Choose variables with high discriminating power .
o Remove irrelevant variables
m Little discriminating power
m Highly correlated with other features

e Data Cleaning:
o Missing Values/Bad Formatting/Type Conversion
Duplicates in dataset Dt P

O
o Outlier detection (bad reconstructed signal?) \ @)
o Verifying/cross-checking labels IF ” e-




Neural Graph
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After preparing your datasets, choose the o e,

model/algorithm that is best suited for
your task.

. _ K-Nearest
Things to consider: Neighbors
. . . * e
e Availability of resources (time) AR
e Strengths and weaknesses? ""7\’@690,&
e Evaluation Metrics o ' Newoms
& point
Cat;/goryA )@
Decision Trees
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https://machinelearningmastery.com/applied-machine-learning-is-hard/



https://machinelearningmastery.com/applied-machine-learning-is-hard/

Training, Validation, & Testing

e For a given dataset with a set of features, one typically partitions their
dataset into:
o Training: The bulk of your overall dataset should be here to make sure
your model learns as many trends as possible.
o Validation: An independent subset used to check for overfitting during
training (and hyper-parameter tuning)
o Testing: Another independent subset used for overall comparisons.
e A figure of merit or evaluation metric is important and is dependent on your
model and problem.

12



relevant elements
I 1

false negatives true negatives

Performance Evaluation Example ce o O

Receiver Operating Characteristic (ROC) curves
are used to evaluate classification models. ——

Perfect
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Quick Break For
Questions



Understanding models

Part 1: Neural Networks




What is a neural network?

Inspired by structure and function of
brains, neural networks (NNs)
consists of neurons that process
some input and outputs a signal.

Strength of NNs come from their
ability to be ‘universal approximators

(https://doi.org/10.1016/0893-6080(89)90020-8)

/

Features

(X)
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https://doi.org/10.1016/0893-6080(89)90020-8
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What’s a node/neuron? X, — L W) y —

Wit
Xip] ——>

For input features x. (i € [O,N]) and
outputs y, we have some activation

function L(x). Oforx- w<0

LEX|W)=HKX-W) =
@l =nG-w = {007 <0

Features are scaled/weighted
before fed into L(x)

Simplest example of an activation

function is the step function H(x). Note: x'w=0 forms a
line like seen on the

right!
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How to neural networks learn?

Components for NN learning:

Performance Metric:
-Figuring out what to optimize on
-Ex. Mean Squared Error (£2)
Update Rule:
-Procedure for your model to learn

-Ex. Gradient Descent with learning
rate n over weights from node n

—

w
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Forward Pass Calculate Loss Backpropagate Learn!

With one’s current NN Determine how close you are Depending on the weights, Update your model’s
configuration, go through to the correct labels (or update each node’s weights. weights. Rinse and repeat
your dataset and determine accuracy) Usually done via a gradient until your model

f(x) for the d’th data point descent. converges (loss is low

after some number of

1 < .
32 — B Z (Yd _f(xd))2 epochs)
d=1

n

W, < W, -1 (awngz)

—— Training Loss

Features
o8] | ——— Training val Loss

(X) , Output
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Quick Break For
Questions



Understanding models

Part 2: Decision Trees

(classify singal/bkg by making cuts)




What is a decision tree?
e Adecision tree is a flowchart-like
model

e Each node partition the dataset
based on one feature.

e Each leaf represents the outcome of
the partition.

Example next page

22



Example classification: Like vs. Dislike computer game

Decision Tree Model
Input features

Input: age, gender, occupation, ... Like the computer game X

’@ one feature —.
—

A T ee

/+2 A

Credit: Gradient Boost Intro 23

Input data

prediction score in each leaf


https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Decision Tree Ensembles

Use Computer
Daily

24



Split nodes Grow trees Combine trees Learn!

Random Forest Boosted Decision Trees

Random Forest xy
/\ /\ /\ /\ /\- /\- Tree 1 Tree 2 Tree n

I ‘ ‘ L e, il

Result1 Result2 Result 3

\ } / \ ?E;fk(x) /

Combines the output of Majority Vote/Average
multiple decision trees 1
to reach asingle result.
Result

Final Outcome

25



Neural Net vs. Decision Tree

e NN can use all input features in a single neuron, DT
uses only one feature per node (DT is simpler)

e NN can have deep layers, DT prefers shallow layers
with few splits (DT is simpler)

e DT is aweak learner — used in ensembles
Multiple trees are trained

e Parameters of a NN are updated continuously
during training. Once trained, the parameters of a
tree are fixed.

e NN have a fixed # of neurons, but DT can grow into
a forest

Features

*X)

26



Particle Identification Recap




Particle Identification at Belle Il:

- Necessary to distinguish ‘stable’ / final state particles to the detector.(e, p, 11, K, p,
d)

- Vital for making precise measurements or validating new physics models.

- This is achieved through a combination of sophisticated sub-detector and
software algorithms.

- We have used PID in the basf2 hands-on exercise (B -> D* | v).

28



General idea for Belle Il PID:

- In each sub-detector d € D = {CDC, TOP, ARICH, ECL, KLM}, a likelihood L9(x | i)
is defined for each charged particle hypothesis i as a joint probability density
function (PDF) of a given set of observables, x.

- Assuming sub-detectors’ measurements of x are independent, a global
likelihood for each particle hypothesis i is defined by

deD

deD
L(x|i) = H L%(x]i) or equivalently, L(x|i) = exp (Z logﬁd(x|z')>
d d

29




General idea for Belle Il PID:

- The ratios of the global likelihood serves as a ‘probability’ for identifying

candidates against all other hypotheses, using Bayes' theorem and the law of
total probability:

Pk = S~ paiaypay) = T =

Credit: Belle Il Note

30



https://docs.belle2.org/record/2340/files/BELLE2-NOTE-TE-2021-011_v6_1.pdf

What is the problem exactly:

- Atrackis detected at Belle Il, we can measure its momentum p thank to the
magnetic field, but we don't know the species, i.e. mass M

- p:MV

- Asimple method is to measure the velocity and then determine the mass
- lonization energy loss dE/dx - Bethe Bloch formula — velocity
- Cherenkov radiation 6_angle, # of photons — velocity

31


https://en.wikipedia.org/wiki/Bethe_formula
https://en.wikipedia.org/wiki/Cherenkov_radiation

CDC and dE/dx:

Charged FSP
ionizes the gas in
CDC along the
trajectory.

L
L
.
L
.
.
"
L
-
o
.

The number of

ionized electrons
(dE) are collected
and measured at

20004,

each wire segment
(dx), which  § --
provides dE/dx.

-> velocity




CDCand dE/ dx: (more relevant p<1 GeV)

CDC dE/dx

Belle Il

FIG. 1. [~ universality curve (right) and CDC-based dE/dx curve predictions (left) for different

charged particle species.

CDC dE/dx
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ARICH and Cherenkov Radiation:

e Measure the
radiation
cone opening
angle and #
of photons
emitted

e ->velocity

34



ARICH

e Mass hypotheses
have large impact
on velocity for low
momentum tracks

e ->large difference
on opening angle
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FIG. 6. The observed Cherenkov rings for two pion tracks from K(S) — wtr~ decay (on the top
with p = 0.74 GeV /¢ and below with p = 1.39 GeV/c). The red and blue rings show the expected
rings for the pion and electron hypothesis respectively.
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Measure the time
and position (x vs
t) of Cherenkov
photon hits on the
MCP-PMT (located
at one end of the
bar)

-> velocity

36



TOP and Cherenkov Radiation:

e 40

8
8
T
!

Belle Il Simulation Belle ll Simulation |
Pion (p = 0.66 GeV/c) Plon (p = 0.66 GeV/c) |
logLe =-137.12 logt. =-121.67

Photon hit time [ns]
R
T

Photon hit time [ns]
nN

Photon hit time [ns]
N
I

3

1o I et 10

£ (T S T st (A W Yl P N oY |
[} 20 40 60 40 100 20 40 60
PMT pixel column PMT pixel column PMT pixel column

FIG. 5. Comparison between the electron, muon and pion TOP PDFs with the observed signal
left by a pion carrying a momentum of 0.66 GeV/c. The eight PMT pixels located at the same

transverse position along the array are grouped together for better readability.
37



ECL and energy deposition:

Measure the energy
deposition and the
width of the shower, e.g.
E/p

Electrons will create
electromagnetic showers
and deposit all their
energy in the ECL

Hadrons will likely pass
through and not lose
much energy

38
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KLM and penetrating length:

Measure the longitudinal
penetration depth and
transverse scattering

Muons penetrate the KLM
and leave tracks

Hadrons create hadronic
showers

40



KLM and penetrating length:

Belle Il Simulation particle gun (pr> 0.7 [GeV/c], 0.8 =6 < 2.2 [rad])

14 e u* (ext. hits) 1.4} o m* (ext. hits)
“< 12L x  u* (matched hits) 12k x  m* (matched hits)
© | ;
510F 1.0f
= L X L ®® e
S o8} Ny, 0.8 - e g
_42 2 * £l ° g ® o &
<06} * 0.6 | * .
E ! :
< 0.4 0.4 =
X
E 0.2 02 E
L] ; X x " )
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KLM Layer KLM Layer

FIG. 8. Average number of extrapolated (solid points) and matched (cross points) KLM hits on
track per KLM layer for a sample of muon tracks (magenta) and pion tracks (orange). These are
taken from single-particle (“particle gun”) samples. 41



What we get from sub-detectors:

- All the information is converted into a likelihood L9(x|i) for each sub-detector.
- Good news: they are defined in basf2 and saved into our exercise samples.

- E.g. elD_CDC, mulD_KLM

42



Auto machine learning

Hands-on exercise: ka
https://www.kaggle.com/competitions/2024-b2sw-ml

O 2 © :


https://www.kaggle.com/competitions/2024-b2sw-ml/

Backup



Pitfalls (what to watch out for)

Vanishing Gradients
Exploding Gradients
Overfitting

High Dimensionality

Hand full of techniques to deal with these:

e Different loss functions or activation functions
o Regularization Terms

e Dropout or hyper-parameter tuning

e Better feature selection

45



Ranges of Activation Functions

Activation Functions

Exponential Linear Unit (ELU) Gaussian Error Linear Unit (GELU) Leaky ReLU
6 6 6
S 5 5
. 4 4
: : P :
- 2 2
0 1 1
=1 0 0
Parametric (ReLU) Reflected Linear Unit (ReLU) Scaled Exponential Linear Unit (SELU)
6 6 / 6
4 i/ a4
4
2 3 2
2
0 0
/ 1 —/
=2 0 =
Sigmoid Function Sigmoid-Weighted Linear Unit (SWLU) / Swish Softmax Function
10 6 012
08 5 010
/ 4 008 /
06
3 006
& 2 0.04
0.2 — / 1 0.02 /
e 1 0 — 00 —
Softplus Tanh Function Mish Function
6 1 6
5 7 5
05
4 4
3 0 3
2 . 2
1 ’ = 1
0 -1 0
6 4 2 0 2 & 4 2 0 2 4 6 - 4 2 0 2 4 6

https://encord.com/blog/activation-f
unctions-neural-networks/
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Universal Approximation Theorem

Universal approximation theorem — Let C(X, R™) denote the set of continuous functions
from a subset X of a Euclidean R" space to a Euclidean space R™. Let 0 € C(R, R). Note that
(0 ox); = o(x;), so o o x denotes o applied to each component of .

Then o is not polynomial if and only if for every n € N, m € N, compact K C R",
feC(K,R™),e > 0thereexistk € N, A € R¥" b € R*, C € R™** such that

sup || f(z) — g(z)| < € Simple Engllsh.: Any contlnuous function f
S can be approximated given some level of

where g(z) = C - (0o (A-z +b)) Precision.

Similar theorems given for unbounded domains
47



2 — 2
Regularization o L =27+ 4 Z W,
n

For certain models, one way to tackle overfitting and exploding gradients is by
introducing a regularizing term in the loss function.

Sometimes, A is normalized by the number of nodes/weights you have (but is
up to the developer/user) since it is a constant throughout training anyways

48



New node split and new tree?

Instanceindex  gradient statistics

8

2 g2, h2
3 g3, h3
4 g4, h4
5 g5, h5

is male?

I3={2,3,5}
G3=g2+9g3+9s

L =11} L={4}  Hy—hy+hs+hs
Gi=q1 G2 = g4
Hy=hi  Hi=hy

: G?
Oby=—2j—}ﬁi—)\+3fy

The smaller the score s, the betterthe structure is
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Gradient Boosting

~N O Ot &~ W N =

Algorithm 1: Gradient_Boost
Fy(x) = argmin, Zi\il L (yi, p)
For m =1 to M do:

Gi = — [6L<yi,F<xi>>

L0 i=1,N

lF(x)=Fm_1<x> ’
a, = arg mina,[,» Zi:1[y~i . ﬂh(XiS a)]2
pm = argmin, S0 L (ys, Frue1(x;) + ph(xi; am))
F(x) = Fio1(X) + pmh(x525)

endFor

end Algorithm

https://jerryfriedman.su.domains/ftp/trebst.pdf

Algorithm 2: LS_Boost

Fo(x) =17

For m =1 to M do:
Ui =Yi — Fro1(xi), i=1,N
(Pm>am) = argming , Yi, [ — ph(xi;a)]?
Fm(x) = Fm—l(x) + pmh(x; am)

endFor

end Algorithm

50



https://jerryfriedman.su.domains/ftp/trebst.pdf

Resources (in general)

In the last 5 years, there is a major abundance of resources to learn ML. Let
put a subset of resources that | used to inspire this talk:

S. Still. "Machine Learning: For scientists” (2019).

|. Haide and L. Reuter “Machine Learning: Current Projects at Belle 2" (2023).

S. Dubey. “Machine Learning Hands-On" (2023).

S. Vallecorsa. “Artificial Intelligence and Machine Learning” CHEP 2023.

|. Hurwitz and D. Kirsch “Machine Learning for dummies: IBM Limited Edition.”

P. Wittek. “Quantum Machine Learning: What Quantum Computing Means to

Data Mining” (2014).
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http://www2.hawaii.edu/%7Esstill/ICS635.pdf
https://indico.belle2.org/event/8841/contributions/61237/attachments/23571/34822/MLOverview_lreuter_ihaide.pdf
https://indico.belle2.org/event/8841/contributions/61156/attachments/23558/34800/belle2_summer_workshop_2023_ml_handson.pdf
https://indico.jlab.org/event/459/contributions/12630/
https://www.ibm.com/downloads/cas/GB8ZMQZ3
https://www.researchgate.net/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining
https://www.researchgate.net/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining

Resources (Neural Networks)

- Neural Networks - State of Art, Brief History, Basic Models and Architecture:
https://libguides.aurora.edu/ChatGPT/History-of-Al-and-Neural-Networks

- IBM: What is a neural network: https://www.ibm.com/topics/neural-networks

- Neural Networks (Machine Learning):
https://en.wikipedia.org/wiki/Neural network (machine learning)

- Neural network models (supervised):
https://scikit-learn.org/stable/modules/neural networks supervised.html
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https://libguides.aurora.edu/ChatGPT/History-of-AI-and-Neural-Networks
https://www.ibm.com/topics/neural-networks
https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://scikit-learn.org/stable/modules/neural_networks_supervised.html

Resources (Decision Trees)

“Boosted Decision Trees.” https://arxiv.org/pdf/2206.09645

“What is a decision tree?.” https://www.ibm.com/topics/decision-trees
“Decision Tree."” https://en.wikipedia.org/wiki/Decision tree

“FastBDT: A speed-optimized and cache-friendly implementation of stochastic
gradient-boosted decision trees for multivariate classification.”
https://arxiv.org/abs/1609.06119

“XGBoost: A Scalable Tree Boosting System.” https://arxiv.org/abs/1603.02754

53


https://arxiv.org/pdf/2206.09645
https://www.ibm.com/topics/decision-trees
https://en.wikipedia.org/wiki/Decision_tree
https://arxiv.org/abs/1609.06119
https://arxiv.org/abs/1603.02754

