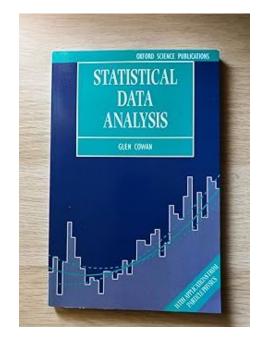
Fitting in HEP for pedestrians

Radek Žlebčík US Belle II Summer Workshop Oxford, June 20, 2024

Resources for statistics in HEP

- Statistical methods are getting more and more complex
 - \rightarrow takes time to tame it
 - → big experiments have dedicated statistical working group
- <u>Glen Cowan's book</u> is an unofficial golden standard
- There are also newer books, e.g. from <u>Olaf Behnke et al.</u>
- Look/sign for one of many statistics schools
 - \rightarrow e.g. <u>INFN School of statistics</u>

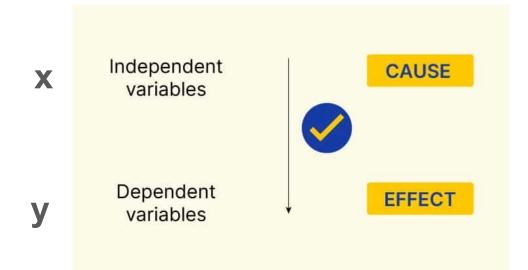


Stand-alone fitting with Minuit

- The examples in this talk are done without dedicated fitting frameworks, without <u>RooFit</u>, <u>RooStats</u>, <u>zFit</u>...
- We use only Minuit minimizer ported to <u>iminuit</u> Python package
 - → for HEP applications Minuit is still superior to <u>scipy.optimize.minimize</u>

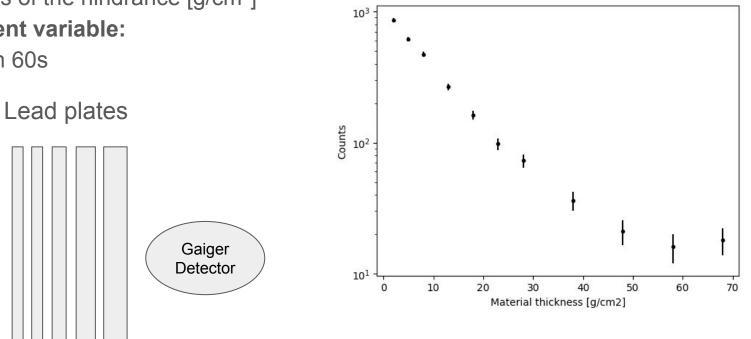
Exploring the Black Box

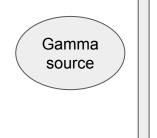
Part 1: Fits with independent and dependent variable



Fitting the absorption curve for photons

- Independent variable: Thickness of the hindrance [g/cm²]
- **Dependent variable:** Counts in 60s





Least square method

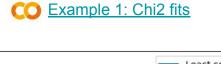
Model:
$$f(x,p) = N \exp(-rac{x}{\lambda}) + N_0$$

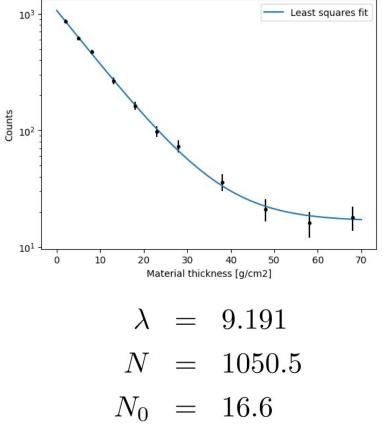
Getting parameters of our model by minimizing sum of deviations in quadrature

$$RSS = \sum_{i} (y_i - f(x_i, p))^2$$

In analogy with the arithmetic mean:

$$RSS = \sum_{i} (a_i - \mu)^2 \quad \iff \quad \mu = \frac{1}{N} \sum_{i} a_i$$





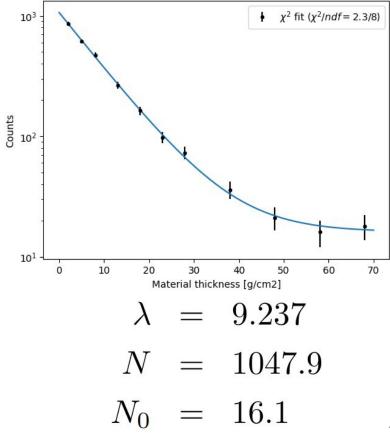
Model:
$$f(x,p) = N \exp(-\frac{x}{\lambda}) + N_0$$

Getting parameters of our model by minimizing the χ^2

$$\chi^2 = \sum_i \left(\frac{y_i - f(x_i, p)}{\sigma_i}\right)^2$$

Unc.-weighted arithmetic mean:

$$\chi^2 = \sum_i \left(\frac{a_i - \mu}{\sigma_i}\right)^2 \iff \mu = \sum_i \frac{a_i}{\sigma_i^2} / \sum_i \frac{1}{\sigma_i^2}$$



Parameter uncertainties from Bootstrap

Emulate statistical fluctuations of the data sample

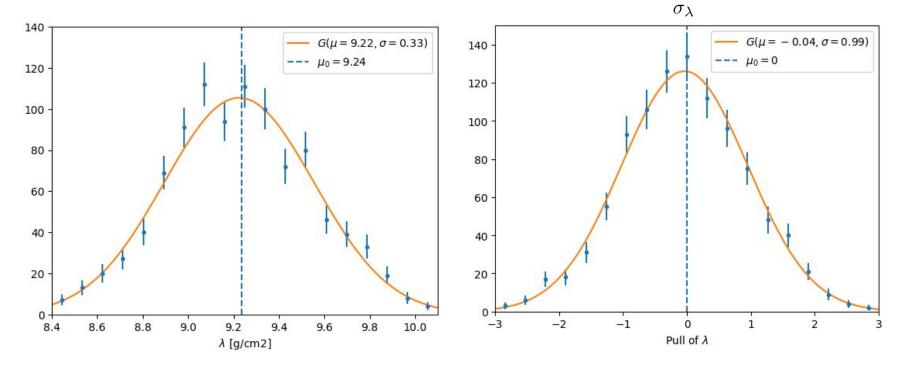
- 1) Generate 1000 statistical replicas of the original dataset $y_i^{(r)} = \text{Poisson}(y_i) \qquad \sigma_i^{(r)} = \sqrt{y_i^{(r)}}$
- 2) Run the fit on each replica r and calculate standard deviation + bias from all replicas

$$\sigma_{p_j} = \sqrt{\frac{1}{1000} \sum_r (p_j^{(r)} - p_j)^2} \quad B_{p_j} = \frac{1}{\sigma_{p_j}} \left(\frac{1}{1000} \sum_r p_j^{(r)} - p_j \right)$$
$$\lambda = 9.237 \pm 0.328 \qquad B_\lambda = 0.03$$

Very popular, it is typically required by the collaboration

Parameter uncertainties from Bootstrap

Histograms filled from replicas, ideally they obey Gaussian distribution



Example 1: Chi2 fits

 $\lambda^{(r)} - \lambda$

Parameter uncertainties from Error propagation

 We are able to calculate parameters p of the fitted function based on the input data y

$$p_j = F_j(y_1, y_2, \dots, y_N)$$

2) Applying standard <u>uncertainty propagation formula</u> (derivatives can be evaluated numerically)

$$\sigma_{p_j} = \sqrt{\left(\frac{\partial p_j}{\partial y_1}\sigma_1\right)^2 + \left(\frac{\partial p_j}{\partial y_2}\sigma_2\right)^2 + \dots + \left(\frac{\partial p_j}{\partial y_N}\sigma_N\right)^2}$$
$$\lambda = 9.237 \pm 0.326$$

Tedious, not used much!

CO Example 1: Chi2 fits

Linear regression

"Linear" means linear in the fitted parameters, what is linear?

$$y = p_0 x$$

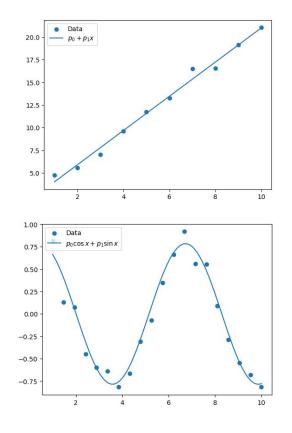
$$y = p_0 + p_1 x$$

$$y = p_0 + p_1 x + p_2 x^2$$

$$y = p_0 + p_1 x + p_2 \exp(-x^2/2)$$

$$y = p_0 \cos x + p_1 \sin x$$

$$y = p_0 \cos(x - p_1)$$



Linear regression ↔ Linear algebra

1) Let's assume the fitted function is a linear combination of p_i

Covariance matrix of y

$$\chi^{2} = \sum_{i} \frac{1}{\sigma_{i}^{2}} \left(y_{i} - \sum_{j} A_{ij} p_{j} \right)^{2} \quad \square \qquad \chi^{2} = (y - Ap)^{T} V^{-1} (y - Ap)$$

2) The χ^2 is a quadratic form of p, it is easy to find minimum

$$\hat{p} = (A^T V^{-1} A)^{-1} A^T V^{-1} y = A^* y$$

3) Error of p can be obtained by standard error propagation

$$V_p = A^* V A^{*T} = (A^T V^{-1} A)^{-1}$$
$$H_{\chi^2} = \frac{\partial^2 \chi^2}{\partial p_i \partial p_j} = 2A^T V^{-1} A$$

$$V_p = 2 \left[\frac{\partial^2 \chi^2}{\partial p_i \partial p_j} \right]^{-1}$$

Parameter uncertainties from $\chi^2(p)$ shape

Any function is linear in p in the proximity of \hat{p}

$$f(x,p) = f(x,\hat{p}) + \sum_{j} \left(\frac{\partial f}{\partial p_{j}}\right)_{p=\hat{p}} (p_{j} - \hat{p}_{j}) \qquad \chi^{2}(p) = \chi^{2}(\hat{p}) + \frac{1}{2} \sum_{i,j} \left(\frac{\partial^{2} \chi^{2}}{\partial p_{i} \partial p_{j}}\right)_{p=\hat{p}} (p_{i} - \hat{p}_{i})(p_{j} - \hat{p}_{j})$$

$$V_p = 2 \left[\left(\frac{\partial^2 \chi^2}{\partial p_i \partial p_j} \right)_{p=\hat{p}} \right]^{-1}$$

Example for 1D χ^2

Notice that if:

$$\chi^2(p) = \chi^2(\hat{p}) + \frac{1}{\sigma^2}(p - \hat{p})^2$$

$$\chi^2(\hat{p}\pm\sigma)=\chi^2(\hat{p})+1$$

Uncertainties from **x**²(**p**): Hesse method

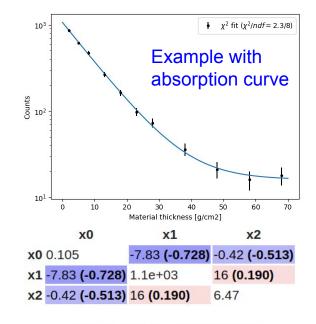
Hesse method is a derivation of uncertainties from the matrix of the second derivatives

 \rightarrow Minuit always calculates second derivatives of χ^2 to validate the minimum

$$V_p = 2 \left[\left(\frac{\partial^2 \chi^2}{\partial p_i \partial p_j} \right)_{p=\hat{p}} \right]^{-1}$$

Uncertainties & correlations are then:

$$\sigma_i = \sqrt{(V_p)_{ii}} \qquad c_{ij} = \frac{(V_p)_{ij}}{\sqrt{(V_p)_{ii}(V_p)_{jj}}}$$



CO Example 1: Chi2 fits

Name	Value	Hesse Error
0 x0	9.24	0.32
1 x1	1.048e3	0.033e3
2 x2	16.1	2.5

Uncertainties from **x**²(**p**): Minos method

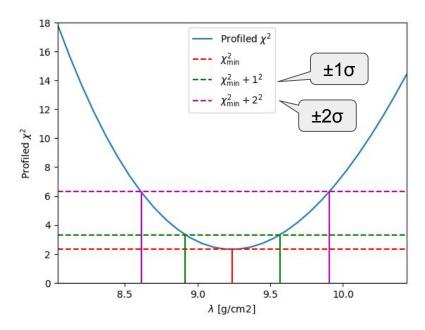
- The χ² around the minima is not necessary Gaussian
 → typically investigated using profile χ² and Δχ²=1 rule
- This "graphical" approach is implemented in Minuit as Minos

	val	$\sigma_{_{\text{H}}}$	σ_{M}	σ_{M}^{+}
x0	9.24	0.32	-0.32	0.33
x1	1.048e3	0.033e3	-0.033e3	0.034e3
x2	16.1	2.5	-2.6	2.5

$$\chi^2_{\text{prof}}(\hat{p} \pm \sigma) = \chi^2(\hat{p}) + 1$$
$$\chi^2_{\text{prof}}(\hat{p} \pm n\sigma) = \chi^2(\hat{p}) + n^2$$

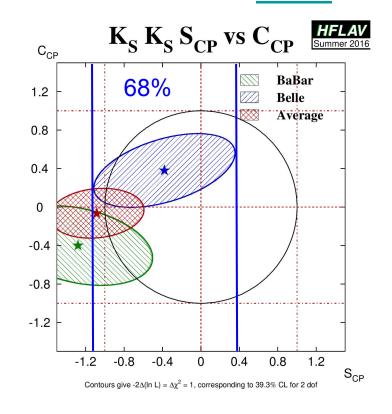
$$\chi^2_{\text{prof}}(\lambda) = \min_{N,N_0} \chi^2(\lambda, N, N_0)$$

CO Example 1: Chi2 fits



Parameter uncertainties 2D case

- The $\Delta \chi^2$ =1 rule is also used for 2D \rightarrow Bevere that 1 σ contour corresponds to 39% CL $\int_0^1 \chi_2^2(x) dx = 0.39$
- Contour can be also derived from the covariance matrix V_p \rightarrow assumption of gaussian behaviour
- Always check if 39% is 68% contour is plotted



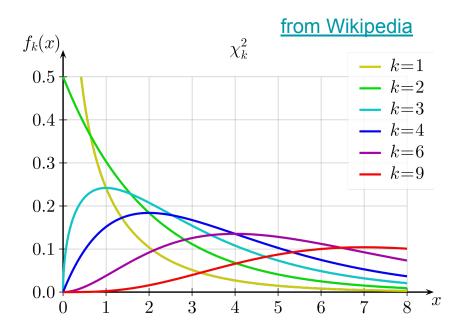
HFLAV

Fit quality and χ^2

- Distribution X² + X² + ... + X², where X is normally distributed variable (i.e. sum over residuals)
- With more degrees of freedom it's more and more gaussian
- Some useful properties:

$$\langle \chi_n^2 \rangle = n \quad \operatorname{var}[\chi_n^2] = 2n$$

Example: $\chi^2/\text{ndf} = 70/50$ (variance=100 \rightarrow 2 σ deviation) scipy.stats.chi2.sf(70, 50) = 3.2%



How to judge χ^2 values?

High χ^2 /ndf values (low p-values):

- (Systematic) uncertainties are underestimated
- Model does not describe data well
- Some uncertainties not considered in the χ^2 calculation

Low χ^2 /ndf values (high p-values):

- (Systematic) uncertainties are overestimated
- Data are derived from the model (e.g. strong regularisation in unfolding)

Example (as measurement using CMS & HERA data):

$$\chi^2/\text{ndf} = 1321/1118 = 1.18 \ (p = 2 \times 10^{-5})$$

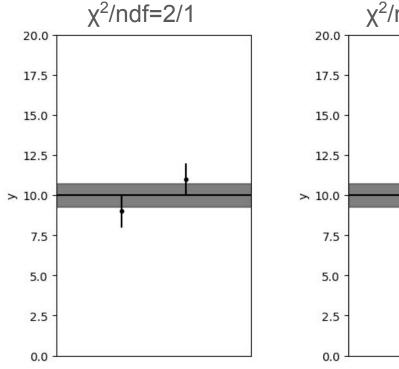
 $\alpha_{\rm S}(m_{\rm Z}) = 0.1170 \pm 0.0014\,({\rm fit}) \pm 0.0007\,({\rm model}) \pm 0.0008\,({\rm scale}) \pm 0.0001\,({\rm param.})$

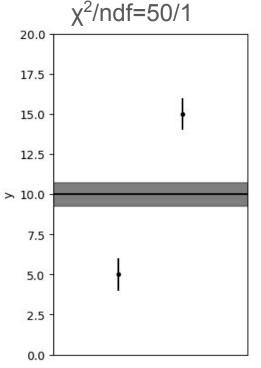
Don't trust uncertainties if $\chi^2/ndf \gg 1$

Scenario 1: (9 ± 1) , (11 ± 1) Combined = (10.0 ± 0.7)

Scenario 2: (5 ± 1), (15 ± 1) Combined = (10.0 ± 0.7)

$$\mu = \sum_{i} \frac{a_i}{\sigma_i^2} / \sum_{i} \frac{1}{\sigma_i^2}$$
$$\sigma = 1 / \sqrt{\sum_{i} \frac{1}{\sigma_i^2}}$$

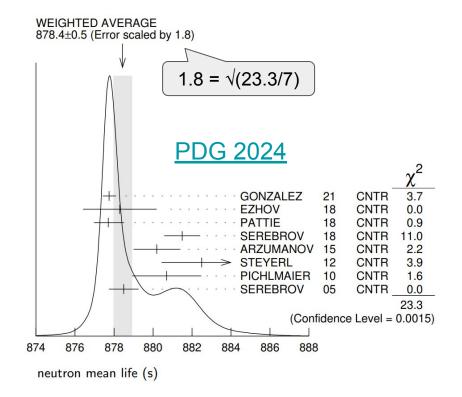




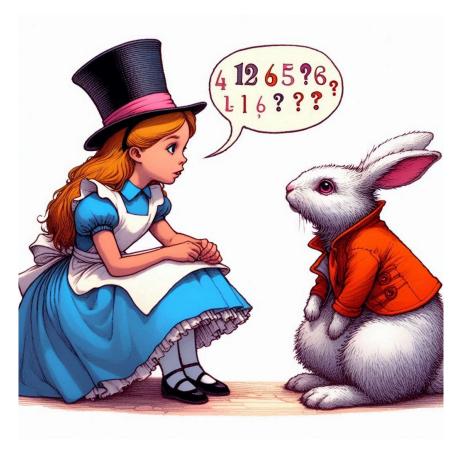
Combination of the measurements: PDG way

PDG Intro

- If chi2/ndf ≤ 1, use the standard formula for error propagation of the weighted mean
- If chi2/ndf ≫ 1, scale the uncertainties of all measurements by identical factor so that chi2'/ndf = 1 (assumption that all measurements underestimated unc. by similar factor)

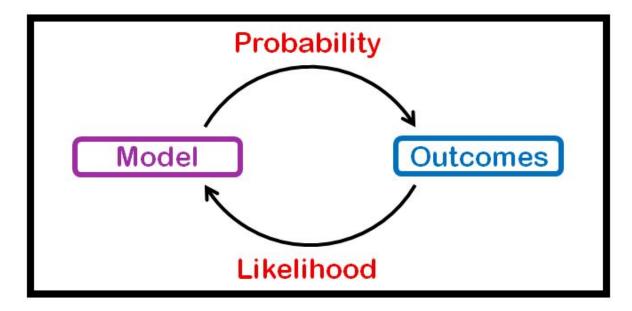


Questions to part 1?



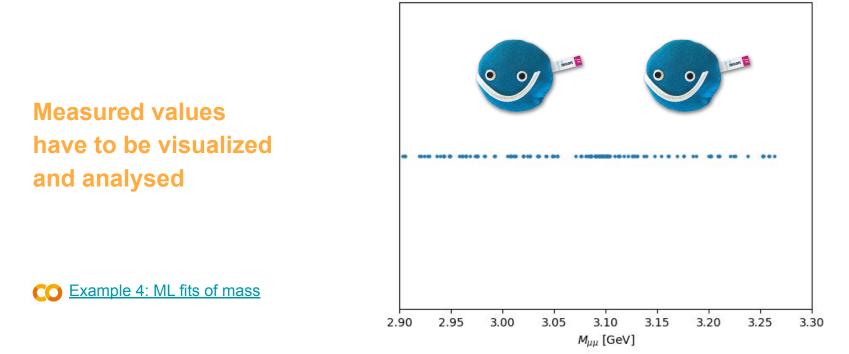
"Alice in Wonderland asking the White Rabbit about probability"

Part 2: Fits of Probability Distribution Function



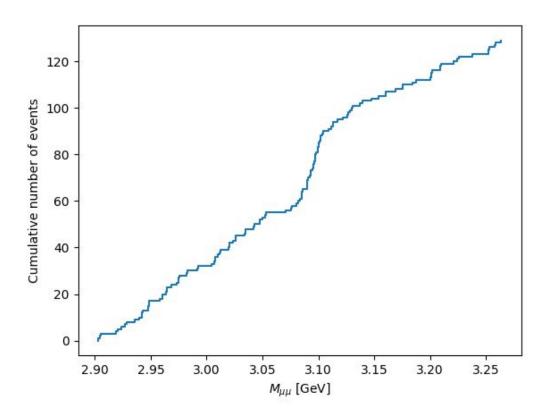
In HEP we often have "random" distribution

Dimuon invariant mass from Belle II



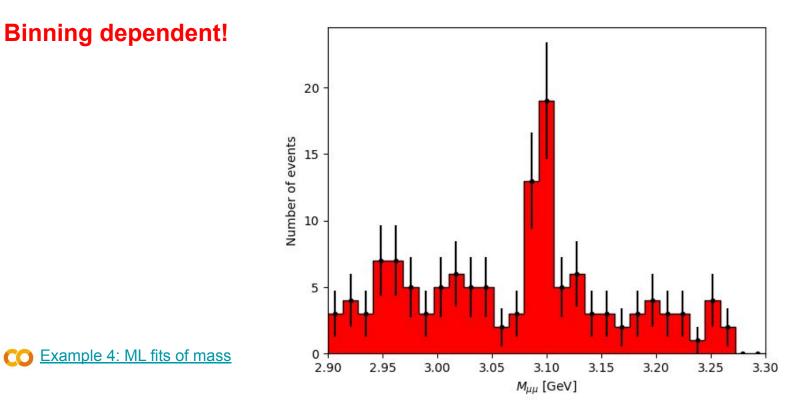
Visualisation using Empirical cumulative distribution

Non local!



CO Example 4: ML fits of mass

Visualisation using Histogram



Binned χ^2 fit

 Binning dependent!
 Especially problematic when number of events is small

• Fast

$$\chi^2 = \sum_{i} \frac{(y_i - f(x_i, p))^2}{f(x_i, p)}$$

Can be also
$$\sigma^2_{i}$$

CO Example 4: ML fits of mass

$$Gaus + Pol \chi^{2} fit \chi^{2}/ndf = 16.1/25$$

$$No events$$

$$\int_{0}^{0} \frac{15}{2.95} \frac{10}{3.00} \frac{10}{3.05} \frac{10}{3.10} \frac{10}{3.15} \frac{10}{3.20} \frac{10}{3.25} \frac{10}{3.30}$$

 $f(x,p) = fG(x,\mu,\sigma) + (1-f)P_1(x,a)$

Getting maximum from the measured events

Binning independent!

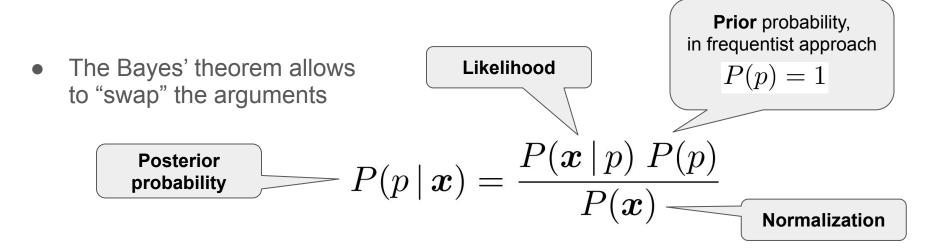
 Assuming we know from theory and detector simulation the Probability Distribution Function (PDF) of the observable x
 → we still don't know exact values of parameters p

 $P(x \mid p) = f(x, p)$

• We typically observe many independent events with values $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$: $P(\mathbf{x} \mid p) = f(x_1, p) f(x_2, p) \dots f(x_n, p)$

What is
$$\,P(p\,|\,oldsymbol{x})$$
 ?

Likelihood is all you need



 Probability that parameters have value p, given the observed data points x is proportional to the Likelihood

$$P(p \mid \boldsymbol{x}) \sim P(\boldsymbol{x} \mid p) = f(x_1, p) f(x_2, p) \dots f(x_n, p)$$

Maximum likelihood fits

• Likelihood is defined as:

$$L(\boldsymbol{x},p) = f(x_1,p)f(x_2,p)\dots f(x_n,p)$$

 Likelihood is maximized wrt p to find the most probable value of the parameter p̂

 \rightarrow Typically done by Minuit,

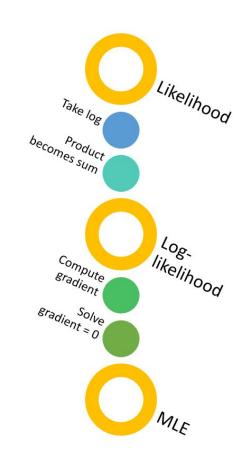
it can take time if there are many events

$$\hat{p} = \underset{p}{\arg\max} \ L(\boldsymbol{x}, p)$$

.

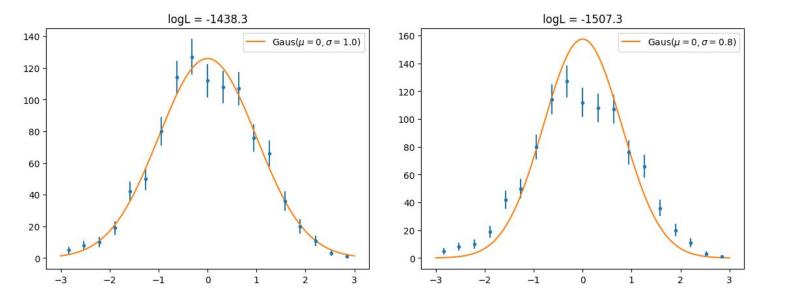
Normalize your PDF f(x,p) properly!

$$\int_{a}^{b} f(x,p)dx = 1$$



Likelihood & Data/Model agreement

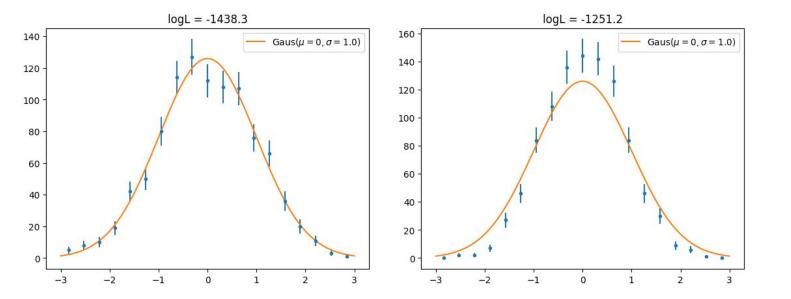
When data match:
 Higher likelihood → Better model quality



Likelihood & Data/Model agreement

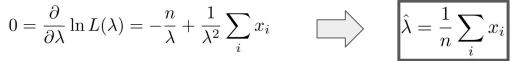
• When data don't match, don't compare likelihoods

CO Example 5: Likelihood values



- If measured values obey exponential distribution $f(x, \lambda) = \frac{1}{\lambda} e^{-\frac{x}{\lambda}}$
- And we have n measurements $x_1, x_2, ..., x_n$, then

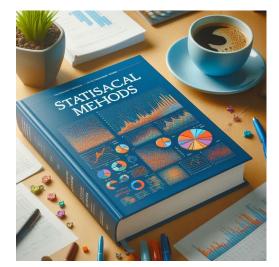
$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}} \qquad \ln L(\lambda) = n \ln \frac{1}{\lambda} - \frac{1}{\lambda} \sum_i x_i$$



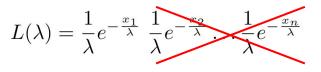
• Bias calculation:

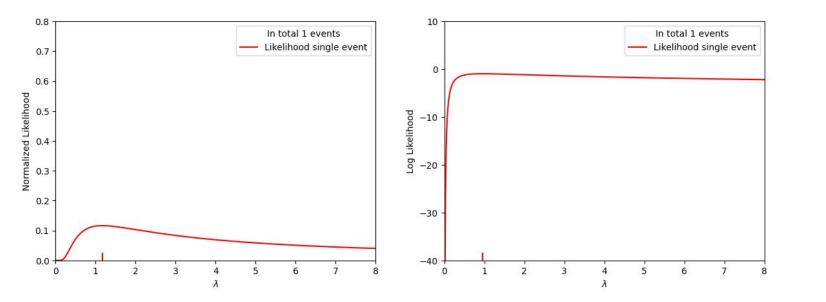
$$\langle \hat{\lambda} - \lambda \rangle = \int dx_1 dx_2 \dots dx_n \left(\frac{1}{n} \sum_i x_i - \lambda \right) \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}} = 0$$

- PDF f must be normalized over the domain
- MLE can be biased, e.g. variance of Gauss



• Likelihood evolution, when events are collected

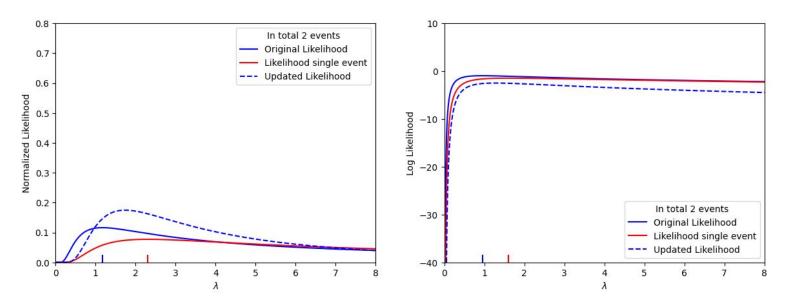




Example 6: Likelihood evolution

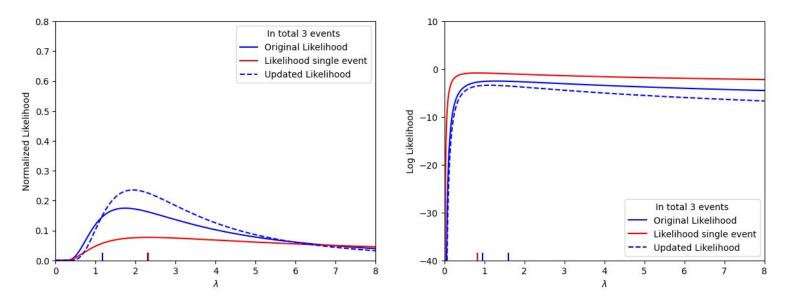
Likelihood evolution, when events are collected

 $L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$



• Likelihood evolution, when events are collected

$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$$



Example 6: Likelihood evolution

• Likelihood evolution, when events are collected

$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$$

0.8 10 In total 4 events **Original Likelihood** 0.7 Likelihood single event 0 --- Updated Likelihood 0.6 Normalized Likelihood 0.5 Log Likelihood -100.4 -20 0.3 0.2 In total 4 events -30 Original Likelihood 0.1 Likelihood single event --- Updated Likelihood 0.0 -407 3 7 0 3 5 8 0 1 2 5 8 4

Example 6: Likelihood evolution

Maximum likelihood estimate: Textbook example

• Likelihood evolution, when events are collected

$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$$

0.8 10 In total 5 events **Original Likelihood** 0.7 Likelihood single event 0 --- Updated Likelihood 0.6 Normalized Likelihood 0.5 Log Likelihood -100.4 -20 0.3 0.2 In total 5 events -30 **Original Likelihood** 0.1 Likelihood single event --- Updated Likelihood 0.0 -403 7 0 2 3 6 7 0 1 2 5

C Example 6: Likelihood evolution

8

Maximum likelihood estimate: Textbook example

• Likelihood evolution, when events are collected

$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$$

0.8 10 In total 6 events **Original Likelihood** 0.7 Likelihood single event 0 --- Updated Likelihood 0.6 Normalized Likelihood 0.5 -og Likelihood -100.4 -20 0.3 0.2 In total 6 events -30 Original Likelihood 0.1 Likelihood single event --- Updated Likelihood 0.0 -407 0 3 6 8 0 3 5

Example 6: Likelihood evolution

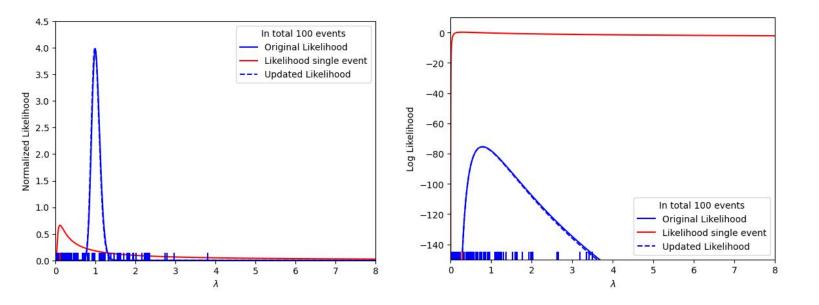
8

Maximum likelihood estimate: Textbook example

• Likelihood evolution, when events are collected

Example 6: Likelihood evolution

$$L(\lambda) = \frac{1}{\lambda} e^{-\frac{x_1}{\lambda}} \frac{1}{\lambda} e^{-\frac{x_2}{\lambda}} \dots \frac{1}{\lambda} e^{-\frac{x_n}{\lambda}}$$



Uncertainties of the ML estimates

• Likelihood gets more and more Gaussian with increasing number of events

$$L(p) = L(\hat{p}) \exp\left(-\frac{(p-\hat{p})^2}{2\sigma_p^2}\right)$$
$$\ln L(p) = \ln L(\hat{p}) - \frac{(p-\hat{p})^2}{2\sigma_p^2}$$

Uncertainty ~ known unknowns

From Hesse Matrix
$$V_{\hat{p}} = -\left[\left(\frac{\partial^2 \ln L(p)}{\partial p_i \partial p_j}\right)_{p=\hat{p}}\right]^{-1}$$

"Graphical" method
$$\ln L(\hat{p}\pm\sigma)=\ln L(\hat{p})-\frac{1}{2}$$

Textbook example: Uncertainty of λ

• Let's assume that the measured values obey exponential distribution

$$f(x,\lambda) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}$$
 $\ln L(\lambda) = n \ln \frac{1}{\lambda} - \frac{1}{\lambda}\sum_{i} x_{i}$

- ML estimate for λ is from first derivative $0 = \frac{\partial}{\partial \lambda} \ln L(\lambda) = -\frac{n}{\lambda} + \frac{1}{\lambda^2} \sum_i x_i \qquad \qquad \hat{\lambda} = \frac{1}{n} \sum_i x_i$
- Uncertainty of lambda using Hesse method

$$V_p = \left(\frac{\partial^2}{\partial\lambda^2}\ln L(\lambda)|_{\lambda=\hat{\lambda}}\right)^{-1} = \frac{1}{n}\hat{\lambda}^2 \qquad \qquad \frac{\partial^2}{\partial\lambda^2}\ln L(\lambda) = \frac{n}{\lambda^2} - \frac{2}{\lambda^3}\sum_i x_i$$

$$\sigma_{\hat{\lambda}} = \frac{1}{\sqrt{n}} \hat{\lambda}$$

Relative uncertainty goes like $1/\sqrt{n}$

Relation between Maximum likelihood and χ^2 fits

• From the Likelihood of the residuals which are assumed to obey Normal distribution

$$L(p) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(y_1 - f(x_1, p))^2}{\sigma_1^2}} \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y_2 - f(x_2, p))^2}{\sigma_2^2}} \dots \frac{1}{\sqrt{2\pi\sigma_n}} e^{-\frac{(y_n - f(x_n, p))^2}{\sigma_n^2}}$$
$$-2\ln L(p) + C = \sum_i \frac{(y_1 - f(x_1, p))^2}{\sigma_1^2} = \chi^2$$

Hesse method

$$V_{p} = 2 \left[\left(\frac{\partial^{2} \chi^{2}}{\partial p_{i} \partial p_{j}} \right)_{p=\hat{p}} \right]^{-1}$$

$$V_{\hat{p}} = 2 \left[\left(\frac{\partial^{2} - 2 \ln L}{\partial p_{i} \partial p_{j}} \right)_{p=\hat{p}} \right]^{-1}$$

"Graphical" method
$$\chi^2(\hat{p}\pm\sigma)=\chi^2(\hat{p})+1$$
$$-2\ln L(\hat{p}\pm\sigma)=-2\ln L(\hat{p})+1$$

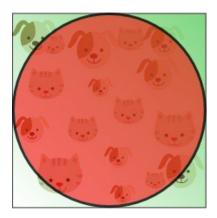
Binned Maximum likelihood fits

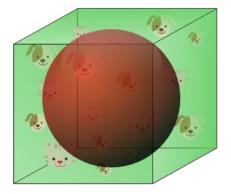
- When one replace Gauss by Poisson for each bin
- Approaches to unbinned ML for infinity bins (bins with zero number of entries are not problem)
- Equivalent to discretisation of observed variable
- Faster fitting \rightarrow getting prior for unbinned fit

$$L(p) = e^{-f(x_1,p)} \frac{(f(x_1,p))^{y_1}}{y_1!} e^{-f(x_2,p)} \frac{(f(x_2,p))^{y_2}}{y_2!} \dots e^{-f(x_n,p)} \frac{(f(x_n,p))^{y_n}}{y_n!}$$
$$\ln L(p) = -\sum_i f(x_i,p) + \sum_i y_i \ln f(x_i,p) + C$$

For both examples (y-absorption fit and $M_{\mu\mu}$ fit) Gaus can be replaced by Poisson CO Example 1: Chi2 fits

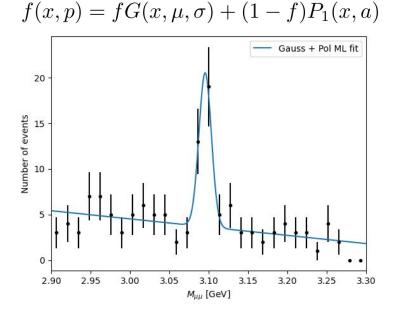
Curse of dimensionality





Fitting $M^{}_{\mu\mu}$ using ML method

- Minimizing -2logL using Minuit
- Minos gives asymmetric unc.



CO Example 4: ML fits of mass

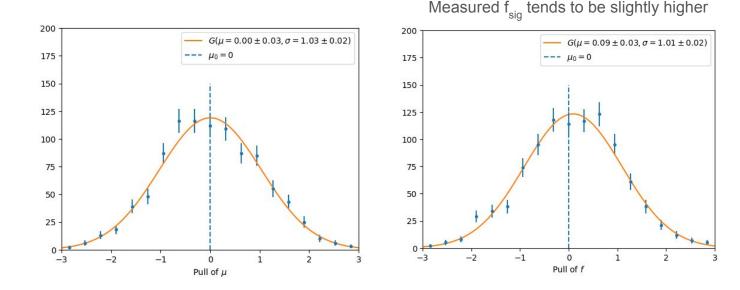
0..μ, 1..σ, 2..a, 3..f

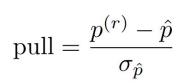
Migrad									
FCN = -292			Nfcn = 409						
EDM = 3	.63e-07	7 (Goal: 0							
Valid Minimum				Below EDM threshold (goal x 10)					
No parameters at limit				Below call limit					
Hesse ok				Covariance accurate					
Name	Value	Hesse E	rror M	inos Erro	r- Min	os Erro	or+ Lir	nit- L	imit+ Fixed
0 x0	3.0949	0.0020	-0	.0020	0.00	21			
1 x1	0.0076	0.0019	-0	.0017	0.00	21	(C	Signal
2 x2	-0.291	0.008	-0	.006	0.01	1			•
3 x3	0.21	0.05	-0	.04	0.05		\leq	Tr	action
x0			x1		x2		3		
Error	0.00		0.00	17 0 0001	0.000	0.011	0.04	10000	
LIIOI	-0.00.	20 0.0021	-0.00.	17 0.0021	-0.000	0.011	-0.04	0.05	
Valid	True	20 0.0021 True	True	True	True	True		0.05 True	
	True	True	True	True	True		True	True	9
Valid	True False	True False	True	True False	True False	True	True False	True False	
Valid At Limi	True False N False	True False False	True False	True False False	True False False	True False	True False False	True False False	2
Valid At Limi Max FCI	True False N False	True False False	True False False False	True False False	True False False	True False False	True False False	True False False	2
Valid At Limi Max FCI	True False N False n False x0	True False False False x1	True False False False	True False False False	True False False False	True False False False x3	True False False False	True False False	2
Valid At Limi Max FCI New Min	True t False N False n False x0	True False False False x1 0e-6 (0.	True False False False	True False False False x2	True False False False	True False False False x3 e-6 (0.0	True False False False	True False False	2
Valid At Limi Max FCI New Min x0 4.01e x1 0e-6	True True False N False False X0 -06 (0.082)	True False False False x1 0e-6 (0. 3.64e-0	True False False False	True False False False x2 -0e-6 (-0.	True False False False 020) 2e 04) 32	True False False False x3 e-6 (0.0	True False False False 20)	True False False	2

Toy from **PDF** vs Hesse uncertainties

Toy pseudo-experiment:

- 1) Generate n from Poisson distribution with $\lambda = n_{Data}$
- 2) Generate n event from the PDF obtained at previous slide
- 3) Run the the ML fit on these events





CO Example 4: ML fits of mass

CO Bootstrap from **Data** vs Hesse uncertainties

Bootstrap replica:

200

175

150

125

100

75

50

25

0

-3

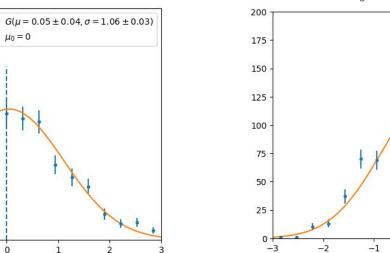
- Generate n from Poisson distribution with $\lambda = n_{Data}$ 1)
- Randomly pick n events from the data set (events can repeat) 2)
- Run the the ML fit on these events 3)

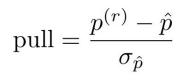
-1

0

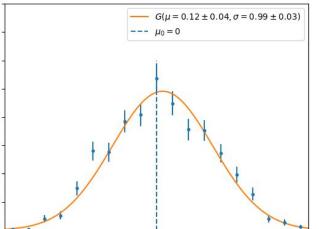
Pull of u

-2





Example 4: ML fits of mass



0

Pull of f

1

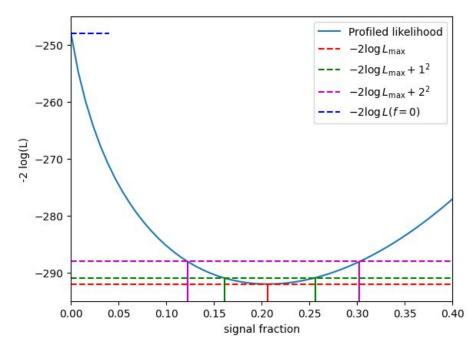
2

Measured f_{sin} tends to be slightly higher

Profile Likelihood scan of f_{Sig}

- Deriving uncertainties by "graphical method"
 - \rightarrow +1, +2², +3²... rule for -2 logL (in analogy to chi2)
- This approach called Minos in iminuit
- Notice that f=0 is special as profiling is effectively done only over BG parameter a (drop in effective N_{df})

$$L_{\text{prof}}(f) = \max_{\mu,\sigma,a} L(\mu,\sigma,a,f)$$



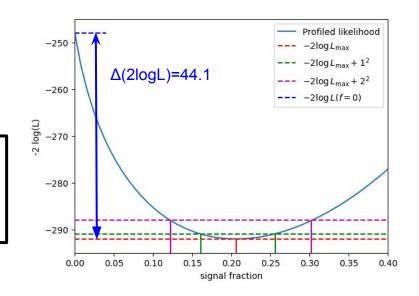
Can we claim discovery: ML ratio test

- If the PDFs for signal and BG are known, the ML ratio is the most powerful discriminator
- If data obey BG-only hypothesis, the $\lambda_{\rm LR}$ behaves as $\chi^2_{n_p}$ (for large #events, Wilks theorem)

 $\lambda_{LR} = 44.11 (n_p = 3)$ p = scipy.stats.chi2.sf(44.11, 3) = 1.4e-9 scipy.stats.chi2.sf(6.05², 1) = 1.4e-9

 6σ significance \rightarrow discovery of J/ Ψ

$$\lambda_{\rm LR} = 2\ln \frac{\sup_{p \in {\rm Sig} + {\rm BG}} L(p)}{\sup_{p \in {\rm BG}} L(p)}$$

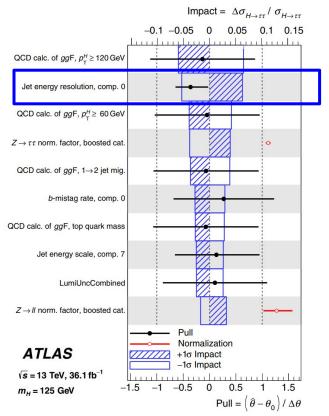


Systematic uncertainties and nuisance parameters

- Most parameters of the model are typically detector related and of the technical nature (unpublished)
 - \rightarrow using profiling to maximize L over these parameters
- Systematic variations can be:
 → Treated out of the likelihood
 > Included into the likelihood vis
 - → Included into the likelihood via nuisance parameters

$$L = \frac{1}{\sqrt{2\pi}\sigma_{K^{\text{jet}}}} \exp\left(-\frac{(K^{\text{jet}} - K^{\text{jet}}_0)^2}{2(\sigma_{K^{\text{jet}}})^2}\right) \prod_i f(x_i; \sigma_{H \to \tau\tau}, K^{\text{jet}})$$

Phys.Rev.D 99 (2019)



Extended Maximum Likelihood

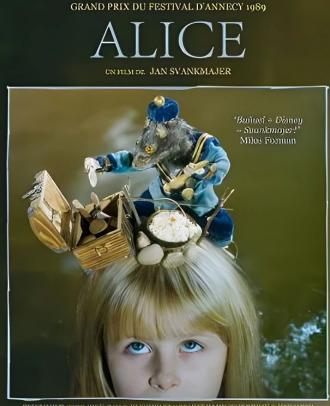
- Adding total number of events as parameter into the Likelihood
- Important if there is external constraint for total number of events (e.g. from luminosity)
 → otherwise fit results are identical

$$L = \underbrace{e^{-\nu} \frac{\nu^n}{n!}}_{i} \prod_{i=1}^n f(x_i, p)$$

$$\begin{aligned} & \left\{ L = e^{-\nu} \frac{1}{n!} \prod_{i}^{n} \left[\nu f f_{\rm s}(x_{i},p) + \nu(1-f) f_{\rm b}(x_{i},p) \right] & \nu = 129.0 \pm 11.4 \\ f = 0.206 \pm 0.045 \end{aligned} \right. \\ & \left\{ L = e^{-(N_{\rm s}+N_{\rm b})} \frac{1}{n!} \prod_{i}^{n} \left[N_{\rm s} f_{\rm s}(x_{i},p) + N_{\rm b} f_{\rm b}(x_{i},p) \right] & N_{\rm s} = 26.6 \pm 6.4 \\ N_{\rm b} = 102.4 \pm 10.8 \end{aligned}$$

CO Example 4: ML fits of mass

Questions to part 2?



5920 00000 0000000

CNC

What to remember

- The χ^2 fits used for systematic-dominated measurements and for xy fits
- Likelihood fits are binning-independent
 → important for small statistics
- Likelihood-ratio test is the standard way to claim discoveries

	0
	REMEMBER
-	