Measurement of CP asymmetries in singly Cabbibo suppressed Ξ_c^+ and Λ_c^+ decays

Dinura Hettiarachchi¹, Janaka Kospalage¹, Jake Bennett¹, Angelo Di Canto²

¹University of Mississippi, University, Mississippi 38655, USA ²Brookhaven National Laboratory, Upton, New York 11973, USA

Belle II Summer Workshop June 20th 2024

Charm & CPV probes: two pathways

- Null Hypothesis:
 - Directly test the Standard Model
 - Via direct CP asymmetry measurements
 - e.g. Belle [arXiv:1712.00619]

 $a_{CP}^{dir}(D^+ \rightarrow \pi^+ \pi^0) = 0$ (isospin limit & experimental sensitivity)

$$a_{CP}^{dir}(D^+ \to \pi^+ \pi^0) = (2.31 \pm 1.24 \pm 0.23)\%$$
[arXiv:1712.00619]

- Over-constrain the Standard Model:
 - Sum rules relating CP asymmetries in different channels
 - e.g. U spin sum rule (invariance under the interchange of d and s quarks)
 - LHCb measured sum rules [arXiv:2209.03179] at level of 2.7σ

 $a_d(D^0\to K^-K^+)+a_d(D^0\to\pi^-\pi^+)\neq 0$

• Needs to explore other modes to get the complete picture.

CP asymmetries in charm baryons: $\Xi_c^+ \to \Sigma^+ h^+ h^-$ and $\Lambda_c^+ \to p^+ h^+ h^-$

- LHCb studied the CP asymmetry difference in singly Cabibbo suppressed Λ_c^+ decay channels: $\Delta A_{CP}^W = A_{CP}(pK^-K^+) - A_{CP}^W(p\pi^-\pi^+) = (0.30 \pm 0.91 \pm 0.61)\% \text{ [JHEP 03, 182 (2018)]}$
- Direct CP asymmetries are more of a theoretical significance than asymmetry differences.
 - Belle II has unique opportunities for such measurements
- Charm meson discovery modes $(D^0 \rightarrow K^- K^+, \pi^- \pi^+)$ are related by U spin sum rules.
 - suggest looking at Λ_c^+ and Ξ_c^+ decays.

 $A_{CP}^{dir}(\Lambda_c^+ \to pK^+K^-) + A_{CP}^{dir}(\Xi_c^+ \to \Sigma^+\pi^+\pi^-) = 0$ $A_{CP}^{dir}(\Lambda_c^+ \to p\pi^+\pi^-) + A_{CP}^{dir}(\Xi_c^+ \to \Sigma^+K^+K^-) = 0$

Methodology

• Raw asymmetry from number counting,

$$A_{raw}^{\Xi_c} = \frac{N(\Xi_c^+ \to \Sigma^+ h^+ h^-) - N(\overline{\Xi}_c^- \to \overline{\Sigma}^- h^- h^+)}{N(\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-) + N(\overline{\Xi}_c^- \to \overline{\Sigma}^- h^- h^+)}$$

• Raw asymmetry includes CPV, production (forward-backward), and detection asymmetries.

$$A_{raw}^{\Xi_c} = A_{CP}^{\Xi_c} + A_{FB}^{\Xi_c} + A_p$$

- The forward-backward asymmetry is expected to be antisymmetric as a function of $cos(\theta^*)$
 - cancel by averaging over bins in $|cos(\theta^*)|$
- Take difference with CF control channel $\Lambda_c^+ \rightarrow \Sigma^+ h^+ h^-$ to cancel the detection asymmetry

$$A_{raw}^{\Lambda_c} = A_{FB}^{\Lambda_c} + A_p$$
 (no CPV)

• Isolate CP asymmetry for signal mode

$$A_{CP}^{\Xi_c} = \frac{A_{raw}^{\Xi_c}(\cos\theta_{\Xi_c}^*) + A_{raw}^{\Xi_c}(-\cos\theta_{\Xi_c}^*)}{2} - \frac{A_{raw}^{\Lambda_c}(\cos\theta_{\Lambda_c}^*) + A_{raw}^{\Lambda_c}(-\cos\theta_{\Lambda_c}^*)}{2}$$

Methodology $(\Lambda_c^+ \rightarrow p^+ h^+ h^-)$

• Raw asymmetry includes CPV, production (forward-backward), and detection asymmetries.

$$A_{raw}^{\Lambda_c - p h h} = A_{CP}^{\Lambda_c - p h h} + A_{FB}^{\Lambda_c - p h h} + A_p$$

- The forward-backward asymmetry is expected to be antisymmetric as a function of $cos(\theta^*)$
 - cancel by averaging over bins in $|cos(\theta^*)|$
- Take difference with CF control channel $\Lambda_c^+ \rightarrow p^+ K^- \pi^-$ to cancel the detection asymmetry

$$A_{raw}^{\Lambda_c - p K \pi} = A_{FB}^{\Lambda_c - p K \pi} + A_p + A_{K/\pi}$$
 (no CPV)

• Take difference with CF control channel $D^0 \to K^- \pi^+ \pi^+ \pi^-$ to cancel the K/ π detection asymmetry

$$A_{raw}^{D^0 \to K \pi \pi \pi} = A_{FB}^{D^0 \to K \pi \pi \pi} + A_{K/\pi}$$
 (no CPV)

• Isolate CP asymmetry for signal mode

$$A_{CP}^{A_{c}-phh} = \frac{A_{raw}^{A_{c}-phh}(\cos(\theta_{A_{c}}^{*})) + A_{raw}^{A_{c}-phh}(-\cos(\theta_{A_{c}}^{*}))}{2} - \frac{A_{raw}^{A_{c}-pK\pi}(\cos(\theta_{A_{c}}^{*})) + A_{raw}^{A_{c}-pK\pi}(-\cos(\theta_{A_{c}}^{*}))}{2} + \frac{A_{raw}^{D^{0} \to K\pi\pi\pi}(\cos(\theta_{D^{0}}^{*})) + A_{raw}^{D^{0} \to K\pi\pi\pi}(-\cos(\theta_{D^{0}}^{*}))}{2}$$

Reconstruction Criteria

Description	Selection			
charged tracks (K, π, p)	in CDC acceptance minimum number (> 0) of hits in CDC			
proton (<i>p</i>)	proton trinaryID > 0.2			
Mass	$\begin{array}{l} 2.35 < {\sf M}(\Xi_c) < 2.60 \; [GeV/c^2] \\ 2.15 < {\sf M}(\Lambda_c) < 2.40 \; [GeV/c^2] \\ 1.75 < {\sf M}(D^0) < 1.95 \; [GeV/c^2] \end{array}$			
CM momentum (Ξ_c, Λ_c, D^0)	CM momentum > 2.0[GeV/c]			
treeFit (Ξ_c, Λ_c, D^0)	chiProb > 0.001			
	$\Xi_c^+ \to \Sigma^+ h^+ h^-$			
photon (γ)	E _{forward} > 0.080 GeV, Ebarrel > 0.030 GeV, Ebackward > 0.060 GeV, clusterNHits > 1.5, 0.2967 < clusterTheta < 2.6180			
π^0	$0.125 < M(\pi^0) < 0.145 [GeV/c^2]$			
Σ	$1.159 < M(\Sigma) < 1.219 [GeV/c^2]$			
	$D^0 \to K^- \pi^+ \pi^+ \pi^-$			
charged tracks (K, π)	dr < 1 [cm] and abs(dz) < 3 [cm]			
K	kaon binaryID > 0.2			

Selection Criteria $(\Xi_c^+ \rightarrow \Sigma^+ h^+ h^-)$

Description	Selection
Mass	2. 40< M(Ξ_c) < 2.54 [GeV/ c^2] 2.24 < M(Λ_c) < 2.34 [GeV/ c^2]
kaon (K)	kaon binaryID > 0.2
proton (<i>p</i>)	proton trinaryID > 0.8

MVA – Multi Variate Analysis

	$\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-$	$\Xi_c^+ \to \Sigma^+ K^+ K^-$
fake photon suppression (fps)	fps > 0.7	fps > 0.3
beam background suppression (bbs)	bbs > 0.8	bbs > 0.8
MVA	MVA > 0.1	MVA > 0.7

•	Multi	Variate	Analy	/sis ((MVA)
---	-------	---------	-------	--------	-------

- Σ flight distance
- χ^2 of vertex fit
- K dr or pi dr
- $\pi^0(\Sigma)$ CM momentum

Mass Distributions $(\Xi_c^+ \rightarrow \Sigma^+ h^+ h^-)$

• Mass distributions of $\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-$ and $\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$ after reconstruction and after applying selections.

Mass Distributions $(\Xi_c^+ \rightarrow \Sigma^+ h^+ h^-)$

• Mass distributions of $\Xi_c^+ \to \Sigma^+ K^+ K^-$ and $\Lambda_c^+ \to \Sigma^+ K^+ K^-$, after reconstruction and after applying selections.

Selection Criteria $(\Lambda_c^+ \rightarrow p^+ h^+ h^-)$

Description	Selection	
Mass	$2.24 < M(\Lambda_c) < 2.34 [GeV/c^2]$ $1.80 < M(D^0) < 1.92 [GeV/c^2]$	
charged tracks (K, π, p)	dr < 1 [cm] and abs(dz) < 3 [cm]	
4	Λ_c flight distance > 0 [<i>cm</i>]	proton trinaryID
Λ_c	Λ_c CM momentum > 2.5[<i>GeV</i> / <i>c</i>]	 proton ID (proton ID +kaon ID +pion ID)
kaon (K)	kaon binaryID > 0.7	kaon binaryID kaon ID
proton (<i>p</i>)	proton trinaryID > 0.9	$\blacksquare \frac{\text{kaon ID}}{(\text{kaon ID+pion ID})}$
	$\Lambda_c^+ \to p^+ \pi^+ \pi^-$	
Λ_c	Λ_c significance of distance > 0.25 [<i>cm</i>]	
pion (π)	pion momentum > 0.30 [<i>GeV</i> / <i>c</i>]	
proton (<i>p</i>)	proton momentum > 0.85[<i>GeV/c</i>]	

• Mass distributions of Λ_c^+ channels used in A_{cp} calculations of $\Lambda_c^+ \rightarrow p^+ \pi^+ \pi^-$, after reconstruction and after applying square cut selections.

• Mass distributions of $D^0 \to K^- \pi^+ \pi^+ \pi^-$ channel used in A_{cp} calculations of $\Lambda_c^+ \to p^+ \pi^+ \pi^-$ after reconstruction and after applying square cut selections.

• Mass distributions of Λ_c^+ channels used in A_{cp} calculations of $\Lambda_c^+ \rightarrow p^+ K^+ K^-$, after reconstruction and after applying square cut selections.

• Mass distributions of $D^0 \to K^- \pi^+ \pi^+ \pi^-$ channel used in A_{cp} calculations of $\Lambda_c^+ \to p^+ K^+ K^-$ after reconstruction and after applying square cut selections.

proton detection asymmetry

- Recall, raw asymmetries include effects from CPV, production (forward-backward), and detection asymmetries.
- For the modes, that the final states have a proton(Sigma),

 $A_{raw} = A_{CP} + A_{FB} + A_p$

- Proton in the final state of signal channel and control channel might cover different regions of phase space.
 - Control channel proton was weighted to match the signal channel proton in phase space.
 - Weights were taken as a combination of proton momentum and proton $\cos\theta$.

hh detection asymmetry

- Recall, raw asymmetries should include h^+h^- detection asymmetry for channels with final state h^+h^- .
- We assume detection asymmetry of h^+h^- cancels out, as the final state contains both sign pions/kaons.
- h^+ and h^- might cover different regions of phase space.
- Initial checks suggest no significant effect of this.

K and π detection asymmetry $(\Lambda_c^+ \rightarrow p^+ h^+ h^-)$

• Recall, raw asymmetries of $\Lambda_c^+ \rightarrow p^+ K^- \pi^-$ and $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$ includes effects from, production (forward-backward), and detection asymmetries

$$A_{raw}^{\Lambda_{c}} - p_{K}\pi = A_{FB}^{\Lambda_{c}} - p_{K}\pi + A_{p} + A_{K/\pi}$$
$$A_{raw}^{D^{0} \to K}\pi\pi\pi = A_{FB}^{D^{0} \to K}\pi\pi\pi + A_{K/\pi}$$

- K and π in the final state of these channels might cover different regions of phase space.
 - D^0 channel K and π was weighted to match the weighted $\Lambda_c^+ \to p^+ K^- \pi^-$ channel K and π in phase space.
 - Weights were taken as a 2D combination of K and π momentum and K and $\pi \cos\theta$.

Fitting Strategy

- Invariant mass fits were modeled. ٠
 - **Double Gaussian** function for the signal
 - 2nd order polynomial function for the background

$$f_g(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)}{2\sigma^2}}$$

$$f_{sig}(x|\mu,\sigma_1,\sigma_2,f_g) = f_g \cdot f(x|\mu,\sigma_1) + (1-f_g) \cdot f(x|\mu,\sigma_2)$$

$$f_{bkg}(x|a,b) = ax + bx^2$$

- Invariant mass distribution fit for the truth matched events in the signal channel ٠
 - extract signal channel parameters
- Invariant mass distribution fit for all events in the control channel ٠
 - extract control channel parameters
- Fits of invariant mass distribution are performed in bins of $cos(\theta^*)$ ٠
 - Simultaneously for the both signal and control channels ٠
 - $\mu + \delta \mu$, $\sigma_1 \times \delta \sigma_1$, and $\sigma_2 \times \delta \sigma_2$ are fixed from extracted parameters

	Parameters name	value	(rounded)
signal parameters $(\Lambda_c^+ \rightarrow p^+ \pi^+ \pi^-)$	sig_yield fg1 mu s1 s2	e	356198 0.170363 2.28667 0.0171379 0.00349743
	Parameters name	value	(rounded)
control parameters $(\Lambda_c^+ \rightarrow p^+ \pi^+ K^-)$	sig_yield bkg_yield fg1 mu s1 s2 a1 a2	1. 4. 6 - -	95701e+00 90514e+00 0.715278 2.28672 0.00243442 0.00585479 -0.0509389 -0.0306419
nel	Parameters name sig_sig_yield sig_bkg_yield smu ss1	value 	(rounded 84557. 1.87335e+0 8.48046e-0 1.3557
$cos(\theta^*)$ bin1 parameters $(\Lambda_c^+ \rightarrow p^+ \pi^+ \pi^-)$	ss2 sig_a1 sig_a2 asig_sig_yield asig_bkg_yield asig_a1 asig_a2		1.3437 -0.024485 -0.0020113 78054. 1.7667e+0 -0.023878 -0.0015994
	<pre>ctr_sig_yield ctr_bkg_yield ctr_fg1 ctr_a1 ctr_a2 actr_sig_yield actr_bkg_yield actr_fg1 actr_a1 actr_a2</pre>		46280 93171 0.72814 -0.048854 -0.040671 42810 88737 0.71998 -0.047241 -0.035586

Results for $\Xi_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-$ using MC15rd default MC

• Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.

MC (~1680 /fb)	$A_{raw} \% (\Xi_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-)$	$A_{raw} \% (\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-)$	$A_{cp}\% (\Xi_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-)$
Truth-matched	6.27 ± 0.59	6.33 ± 0.15	$\textbf{-0.05} \pm 0.61$
Fitted	6.22 ± 2.08	6.60 ± 0.44	-0.38 ± 2.13

• Results are consistent with the $A_{cp} = 0$

• $cos(\theta^*)$ bin 1 matter distributions of $\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-$, and weighted $\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$

Results for $\Xi_c^+ \rightarrow \Sigma^+ K^+ K^-$ using MC15rd default MC

• Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.

MC (~1680 /fb)	$A_{raw} \% (\Xi_c^+ \to \Sigma^+ K^+ K^-)$	$A_{raw} \% (\Lambda_{\mathcal{C}}^+ \to \Sigma^+ K^+ K^-)$	$A_{cp}\%(\Xi_c^+\to\Sigma^+K^+K^-)$
Truth-matched	5.46 ± 1.08	6.07 ± 0.79	-0.61 ± 1.34
Fitted	5.91 ± 1.68	6.46 ± 0.73	-0.55 ± 1.83

• Results are consistent with the $A_{cp} = 0$

• $cos(\theta^*)$ bin 1 matter distributions of $\Xi_c^+ \to \Sigma^+ K^+ K^-$, and weighted $\Lambda_c^+ \to \Sigma^+ K^+ K^-$

Results for $\Lambda_c^+ \rightarrow p^+ \pi^+ \pi^-$ using MC15rd default MC

- Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.
- *Subset of the full MC sample corresponding to 105 /fb was used for $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ mode.

MC (~1680 /fb)	$A_{raw} \% (\Lambda_c^+ \to \mathrm{p}^+ \pi^+ \pi^-)$	$A_{\rm raw}$ % ($\Lambda_c^+ ightarrow { m p}^+ \pi^+ K^-$)	$A_{raw}\% (D^0 \to K^- \pi^+ \pi^+ \pi^-)^*$	$A_{cp}\%(\Lambda_{\mathcal{C}}^{+}\to\mathrm{p}^{+}\pi^{+}\pi^{-})$
Truth-matched	3.23 ± 0.17	2.80 ± 0.07	-0.86 ± 0.07	-0.39 ± 0.20
Fitted	3.79 ± 0.53	2.82 ± 0.11	-0.95 ± 0.19	0.02 ± 0.57

• Results are consistent with the A_{cp}= 0

• $cos(\theta^*)$ bin 1 matter distributions of $\Lambda_c^+ \to p^+\pi^+\pi^-$, weighted $\Lambda_c^+ \to p^+\pi^+K^-$, and weighted $D^0 \to K^-\pi^+\pi^+\pi^-$

Results for $\Lambda_c^+ \rightarrow p^+ K^+ K^-$ using MC15rd default MC

- Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.
- *Subset of the full MC sample corresponding to 105 /fb was used for $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ mode.

MC (~1680 /fb)	$A_{raw} \% (\Lambda_c^+ \to \mathrm{p}^+ K^+ K^-)$	A _{raw} % ($\Lambda_c^+ ightarrow \mathrm{p}^+ \pi^+ K^-$)	$A_{raw}\% (D^0 \to K^- \pi^+ \pi^+ \pi^-)^*$	$A_{cp} \% (\Lambda_c^+ \to \mathrm{p}^+ K^+ K^-)$
Truth-matched	3.69 ± 0.52	3.22 ± 0.06	-0.63 ± 0.05	-0.16 ± 0.53
Fitted	3.33 ± 1.20	3.19 ± 0.13	-0.74 ± 0.19	0.60 ± 1.22

• Results are consistent with the $A_{cp} = 0$

• $cos(\theta^*)$ bin 1 matter distributions of $\Lambda_c^+ \to p^+ K^+ K^-$, weighted $\Lambda_c^+ \to p^+ \pi^+ K^-$, and weighted $D^0 \to K^- \pi^+ \pi^+ \pi^-$

Remarks

- We are looking into detection asymmetry of *hh* more closely.
- We are bootstrapping on a subset of the full Monte Carlo sample, corresponding to the integrated luminosity of the available data sample (426.6 /fb).
- We are investigating the potential reasons for the difference between the truth-matched and fitted A_{cp} values of $A_{c}^+ \rightarrow p^+ \pi^+ \pi^-$ mode.
- We are in the final phase of completing the first version of Belle2Note.
- We hope to ask for a working group review soon.

ctr_sig_yield	466665	+/- 1.2e+03	-1.2e+03	+1.2e+03	-1.2e+03	+1.2e+03	False
ctr_bkg_yield	940361	+/- 1.4e+03	-1.4e+03	+1.4e+03	-1.4e+03	+1.4e+03	False
ctr_fg1	0.26006	+/- 0.005	- 0.0049	+ 0.0051	- 0.0049	+ 0.0051	False
ctr_a1	-0.0490723	+/- 0.0018	- 0.0018	+ 0.0018	- 0.0018	+ 0.0018	False
ctr_a2	-0.0378251	+/- 0.0024	- 0.0024	+ 0.0024	- 0.0024	+ 0.0024	False
actr_sig_yield	431170	+/- 1.1e+03	-1.1e+03	+1.1e+03	-1.1e+03	+1.1e+03	False
actr_bkg_yield	896059	+/- 1.3e+03	-1.3e+03	+1.3e+03	-1.3e+03	+1.3e+03	False
actr_fg1	0.268196	+/- 0.0051	- 0.005	+ 0.0052	- 0.005	+ 0.0052	False
actr_a1	-0.0474012	+/- 0.0018	- 0.0018	+ 0.0018	- 0.0018	+ 0.0018	False
actr_a2	-0.032489	+/- 0.0025	- 0.0024	+ 0.0024	- 0.0024	+ 0.0024	False
ctr_sig_yield	462804	+/- 9.6e+02	- 1e+03	+ 1e+03	- 1e+03	+ 1e+03	False
ctr bkg vield	931717	+/- 9 6e+02	-1 2e+03	+1 20+03	-1 2e+03	+1 20+03	False
ctr fal	0.728149	+/- 0.0042	- 0.0041	+ 0.0041	- 0.0041	+ 0.0041	False
ctr_a1	-0.0488542	+/- 0.0018	- 0.0018	+ 0.0018	- 0.0018	+ 0.0018	False
ctr_a2	-0.0406715	+/- 0.0022	- 0.0022	+ 0.0022	- 0.0022	+ 0.0022	False
actr_sig_yield	428104	+/- 9.2e+02	-9.8e+02	+9.9e+02	-9.8e+02	+9.9e+02	False
actr_bkg_yield	887373	+/- 9.2e+02	-1.2e+03	+1.2e+03	-1.2e+03	+1.2e+03	False
actr_fg1	0.719981	+/- 0.0044	- 0.0042	+ 0.0042	- 0.0042	+ 0.0042	False
actr_a1	-0.0472417	+/- 0.0018	- 0.0019	+ 0.0019	- 0.0019	+ 0.0019	False
actr_a2	-0.0355868	+/- 0.0023	- 0.0023	+ 0.0023	- 0.0023	+ 0.0023	False

initial

weighted

	A _{raw} % (Truth-matched)	A _{raw} % (Fitted)
$\Lambda_c^+ \to p^+ \pi^+ K^-$	2.8868 ± 0.0694	2.9217 ± 0.1296
weighted $\Lambda_c^+ \rightarrow p^+ \pi^+ K^-$	2.7978 ± 0.0698	2.8219 ± 0.1098

<pre>ctr_sig_yield ctr_bkg_yield ctr_fg1 ctr_a1 ctr_a2 actr_sig_yield actr_bkg_yield actr_fg1 actr_a1 actr_a1 actr_a1 actr_a2</pre>	534753 1.56553e+06 0.307921 -0.0546453 -0.0281748 514914 1.53976e+06 0.316439 -0.0527385 -0.0294822	+/- 1.4e+03 +/- 1.7e+03 +/- 0.0068 +/- 0.0014 +/- 0.0018 +/- 1.4e+03 +/- 1.7e+03 +/- 0.0069 +/- 0.0014 +/- 0.0014	-1.4e+03 -1.7e+03 - 0.0067 - 0.0014 - 0.0018 -1.4e+03 -1.7e+03 - 0.0068 - 0.0014 - 0.0014	+1.4e+03 +1.7e+03 + 0.0069 + 0.0014 + 0.0018 +1.4e+03 +1.7e+03 + 0.007 + 0.0014 + 0.0014	-1.4e+03 -1.7e+03 - 0.0067 - 0.0014 - 0.0018 -1.4e+03 -1.7e+03 - 0.0068 - 0.0014 - 0.0014	+1.4e+03 +1.7e+03 + 0.0069 + 0.0014 + 0.0018 +1.4e+03 +1.7e+03 + 0.007 + 0.0014 + 0.0014	False False False False False False False False
actr_a2	-0.0294822	+/- 0.0018	- 0.0018	+ 0.0018	- 0.0018	+ 0.0018	False
	500010		1 2 1 2 2		1 2	1 2	F-1
ctr_sig_yield	539310	+/- 1.2e+03	-1.2e+03	+1.3e+03	-1.2e+03	+1.3e+03	False
ctr_DRg_yield	1.33/890+00	+/- 1.20+03	-1.00+03	+1.00+03	-1.00+03	+1.00+03	False
ctr_tgi	-0 0520222	+/- 0.0052 +/- 0.001/1	- 0.0049	+ 0.0040	- 0.0049	+ 0.0040	False
ctr a?	-0.0286019	+/- 0.0014	- 0.0017	+ 0.0014	- 0.0014	+ 0.0017	False
actr sig vield	520772	+/- 1.2e+03	-1.2e+03	+1.2e+03	-1.2e+03	+1.2e+03	False
actr_bkg_yield	1.53421e+06	+/- 1.2e+03	-1.6e+03	+1.6e+03	-1.6e+03	+1.6e+03	False
actr_fg1	0.686616	+/- 0.0053	- 0.0049	+ 0.0049	- 0.0049	+ 0.0049	False
actr_a1	-0.0522247	+/- 0.0014	- 0.0014	+ 0.0014	- 0.0014	+ 0.0014	False
actr_a2	-0.0295979	+/- 0.0018	- 0.0017	+ 0.0018	- 0.0017	+ 0.0018	False

initial

weighted

	A _{raw} % (Truth-matched)	A _{raw} % (Fitted)
$\Lambda_c^+ \to p^+ \pi^+ K^-$	2.8868 ± 0.0694	2.9217 ± 0.1296
weighted $\Lambda_c^+ \rightarrow p^+ \pi^+ K^-$	2.7978 ± 0.0698	2.8219 ± 0.1098