Introduction to the Physics of Particle Flavors

Belle II Explorer Hülya Atmacan June 17, 2024 **University of Cincinnati**

• Flavor: indicates the different types of Standard Model (SM) fermions, both quarks and leptons.

down type quarks

What is flavor?

WikipediA The Free Encyclopedia

Flavour in particle physics

Flavour quantum numbers

- Isospin: I or I_3
- Charm: C
- Strangeness: S
- Topness: T
- Bottomness: B'

Related quantum numbers

- Baryon number: B
- Lepton number: L
- Weak isospin: **T** or T_3
- Electric charge: Q
- X-charge: X

Combinations

up type quarks

charged leptons

neutrinos

- Interaction of gauge bosons with fermions described by SM vertices
- and fermions determine the properties of the interaction

Standard Model Vertices

Properties of the gauge bosons and nature of the interaction between the bosons

Only the weak interaction allows flavor change

Flavor Change

Obtain deeper understanding of the fundamental flavor structure of the nature.

- Charge Parity (CP) violation and its connection to the matter dominated Universe. (Matter-antimater asymmetry of universe requires *CP-violating interactions (Sakharov 1967)*
- Discover effects of new particles and forces beyond the Standard Model even particles too massive to be produced at the high energy colliders.

Why do we study flavor physics?

• $(\vec{r} \rightarrow -\vec{r}, \vec{p} \rightarrow -\vec{p}, \vec{L} \rightarrow \vec{L})$

Charge Conjugation, C

• $e^- \rightarrow e^+$, $K^+ \rightarrow K^-$

CP is the product of the C and P operators.

• CP transformation converts a particle into its anti-particle.

What is CP?

"CP-mirror," a device that returns the mirror image of the anti-matter.

CP Symmetry, Particles - Antiparticles

CP is violated IF particles and anti-particles behave differently!

What is different about the weak interaction?

Leptons: no generation crossing

- Only the weak interaction allows flavor change
 - **CP** is violated in weak interactions

What is different about the weak interaction?

Leptons: no generation crossing

W[±] "charged current"

the pattern was not initially understood

Quarks: generation crossing

- Only the weak interaction allows flavor change
 - **CP** is violated in weak interactions

The solution was suggested by Cabibbo in 1963, perfected by Glashow, Illiopoulos, and Maiani (GIM) in 1970, and a an explanation for CP violation is proposed by Kobayashi and Maskawa (KM) in 1973:

Instead of

$$\begin{pmatrix} u \\ d \end{pmatrix}, \begin{pmatrix} c \\ s \end{pmatrix}, \begin{pmatrix} t \\ b \end{pmatrix}$$

Quark Mixing

the weak force couples the pairs

$$\begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix}, \begin{pmatrix} t \\ b' \end{pmatrix}$$

where d', s', and b' are linear combinations of the physical quarks d, s, and b'

(Kobayashi-Maskawa **1973**)

11

Can be different!

CP-violation measured in B-decays: 2002

Quark Mixing

- Unitarity condition: $(V_{CKM})^{\dagger} V_{CKM} = 1$
- The 9 unitarity conditions of the 3×3 generations CKM matrix: lacksquare $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$ $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$

- $V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$ $V_{\mu d}V_{\mu b}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ $V_{\mu\nu}V_{\mu\nu}^{*} + V_{cs}V_{ch}^{*} + V_{ts}V_{th}^{*} = 0$
- $V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$ $V_{\mu d}V_{td}^* + V_{\mu s}V_{ts}^* + V_{\mu b}V_{tb}^* = 0$ $V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0$

$$\Leftrightarrow \sum_{j} V_{ij} V_{jk}^* = \delta_{ik}$$

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

- Unitarity condition: $(V_{CKM})^{\dagger} V_{CKM} = 1$
- The 9 unitarity conditions of the 3×3 generations CKM matrix: lacksquare $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$ $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$
- The 6 complex "Unitarity Triangles" involve different physics processes

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

 $V_{\mu d}V_{cd}^{*} + V_{\mu s}V_{cs}^{*} + V_{\mu b}V_{cb}^{*} = 0$ $V_{\mu d}V_{td}^* + V_{\mu s}V_{ts}^* + V_{\mu b}V_{tb}^* = 0$ $V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0$

$$\Leftrightarrow \sum_{j} V_{ij} V_{jk}^* = \delta_{ik}$$

14

- Unitarity condition: $(V_{CKM})^{\dagger} V_{CKM} = 1$
- The 9 unitarity conditions of the 3×3 generations CKM matrix: lacksquare $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$ $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$
- The 6 complex "Unitarity Triangles" involve different physics processes

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

 $V_{\mu d}V_{cd}^{*} + V_{\mu s}V_{cs}^{*} + V_{\mu b}V_{cb}^{*} = 0$ $V_{\mu d}V_{td}^* + V_{\mu s}V_{ts}^* + V_{\mu b}V_{tb}^* = 0$ $V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0$

$$\Leftrightarrow \sum_{j} V_{ij} V_{jk}^* = \delta_{ik}$$

- Unitarity condition: $(V_{CKM})^{\dagger} V_{CKM} = 1$
- The 9 unitarity conditions of the 3×3 generations CKM matrix: lacksquare $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$ $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$
- The 6 complex "Unitarity Triangles" involve different physics processes

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

 $V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$ $V_{ud}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0$ $V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0$

$$\Leftrightarrow \sum_{j} V_{ij} V_{jk}^* = \delta_{ik}$$

- Unitarity condition: $(V_{CKM})^{\dagger} V_{CKM} = 1$
- The 9 unitarity conditions of the 3×3 generations CKM matrix: \bullet $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$ $|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$
- The 6 complex "Unitarity Triangles" involve different physics processes

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

 $V_{\mu d}V_{cd}^{*} + V_{\mu s}V_{cs}^{*} + V_{\mu b}V_{cb}^{*} = 0$ $V_{\mu d}V_{td}^{*} + V_{\mu s}V_{ts}^{*} + V_{\mu b}V_{tb}^{*} = 0$ $V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0$

$$\Leftrightarrow \sum_{j} V_{ij} V_{jk}^* = \delta_{ik}$$

height measures the amount of CP violation

 $m_{\Upsilon(4S)} \sim 10.58 \text{ GeV}$ $m_{\rm B}^0 \sim m_{\rm B}^- \sim 5.28 ~{\rm GeV}$

Equal amounts of matter and anti-matter

One Way to Produce B's

The $\Upsilon(4S)$ - a clean source of *B* meson *pairs*

B Factory - Super KEKB and BELLE II detector

- B-Factory experiments [Belle at KEK(Japan), BaBar at SLAC (Stanford)] (1999-2009)
 - CP asymmetry observed in diverse processes in B decay
 - -> many measurements, (over)constrain CKM, confirm unitarity

Next generation B factory, BELLE II detector at Super KEKB will be covered by Dr. Seema Choudhury

Introduction t

19

Measurement of CP Violation in $B^{\theta} \rightarrow J/\psi K_s^{\theta}$

PRL 108, 171802 (2012)

 Top plot shows the decay time distribution for B⁰ and anti-B⁰. Matter and anti-matter are essentially different.

- If CP were conserved in nature, the bottom distribution
- would be completely flat.
- Belle collected 7.7 x 10⁸ B events for this plot

t.

n

- However, the Standard Model sources of CP violation cannot explain the matter dominance of the universe.
- We have to search for new sources of CP violation \Rightarrow New physics beyond the Standard Model.

CP Violation and the Standard Model

B

Belle II

22

Extra

To generate this initial asymmetry three conditions must be met (Sakharov, 1967):

- Baryon number violation
- Charge and Charge Parity violation
- Departure from thermal equilibrium; in thermal equilibrium any baryon number violating process will be balanced by the inverse reaction

Asymmetric Universe of Matter

There are two main types of symmetries in physics: continuous and discrete.

Emmy Noether (1882 - 1935)

•

conservation law.

Laws of physics invariant under

Spatial Translations

Time Translations

Rotations

Symmetries in Physics

For <u>every continuous symmetry</u> there exists a corresponding

• Discrete symmetries are very important in particle physics!

- Parity, **P**
- Parity reflects a system through the origin. \vec{r}
 - $(\overrightarrow{r} \to -\overrightarrow{r}, \overrightarrow{p} \to -\overrightarrow{p}, \overrightarrow{L} \to \overrightarrow{d}) \longrightarrow \overrightarrow{a}$
- Charge Conjugation, C
- **C** changes the sign of all the "internal" quantum numbers. $e^- \rightarrow e^+, \ K^+ \rightarrow K^-, \ p \rightarrow \overline{p}, \ \gamma \rightarrow \gamma$
- Time reversal, 7
- **T** reverse any motion in system: $\vec{r}t \rightarrow -\vec{t}$

Diserrete Symmetries

(Kobayashi-Maskawa 1973)

Kobayashi and Maskawa proposed a daring explanation for CP violation in weak interactions.

• Need at least **3 Generation of Quarks** (then not known).

• Get a CP-violating phase $e^{i\delta}$, if one assumes three families.

matrix

relative magnitudes

If $t_1 = t_2$, then the particle on the CP eigenstate must be a B⁰. Note that the tagging information is communicated across space instantaneously despite the fact that the B's could be separated by a finite distance (a few hundred microns). This is an example of quantum entanglement (the EPR paradox).

Quantum Weirdness

This particle must have decayed as a B^0

B Time Dependent CP Violation in B Decays Belle II

