

The Belle II Experiment

Dr. Seema Choudhury

Iowa State University

Birth of the Universe

- ✓ The early universe was hot and filled with high-energy particles
- ✓ After the Big Bang exploded with enormous energy, the universe began to cool down
- ✓ But what made Big Bang happen in the first place? We don't know...
- ✓ To understand what the Universe was like during those initial moments, scientists use particle accelerators
- To detect and record particles resulting from accelerator collisions, we use detectors, ex: Belle II
- ✓ Unravel the mysteries of the subatomic world

The Belle II Experiment

US Belle II Summer Workshop

Standard Model (SM) of Particle Physics

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Particle Physics Experiments

Belle II Experiment: SuperKEKB Accelerator and Belle II detector

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

SuperKEKB Accelerator

- Create conditions similar to those right after the Big Bang by slamming electron-positron together at nearly the speed of light, releasing high energy particles
- ✓ These extreme conditions allow scientists to study the fundamental particles and forces that shaped the Universe

- Situated at High Energy Accelerator Research Organization (KEK), Japan
- ✓ SuperKEKB is a circular collider with a circumference of ~3 km
- ✓ Asymmetric energy electron (7 GeV) positron (4 GeV) collider at CM energy close to Y(4S) resonance

The Belle II Experiment

US Belle II Summer Workshop

SuperKEKB Accelerator

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Belle II Detector

How the Belle II Detector works ...

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Electron-Positron Collision

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Motivation for Belle II experiment

- \checkmark To study the properties of *B* mesons and other particles
- ✓ Understand matter-antimatter asymmetry of the universe with precise measurement of *CP*-violation parameters
- ✓ Discover new fundamental particles that complete the SM at high energy or set stringent constraints on their dynamics

• Final state mesons like π^{\prime} , K^{\prime} , p^{*} composed of quarks, in addition to *e*- and μ^{-} can be identified in the Belle II detector • Energy deposit by γ and K_L

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Vertex Detectors: PXD & SVD

Tracking System: CDC

- ✓ Measure the charged particle's trajectory, momenta, and energy loss
- $\checkmark\,$ CDC chamber is filled with the gas mixture of He and ethane
- ✓ Charged particles passing the chamber ionize the gas molecules into ions and electrons
- ✓ Generated electrons are accelerated toward the vicinity of the anode wires, where gas amplification causes signal propagation
- \checkmark Accurate position of the track can be obtained from the drift time of electrons
- \checkmark Due to strong magnetic field, charged particles curve according to their momentum
- ✓ Particle identification using dE/dx

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Particle Identification System: TOP

Particle Identification System: ARICH

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Electromagnetic Calorimeter: ECL

- ✓ ECL to measure the energy of electromagnetically interacting particles such as electrons and photons
- ✓ Distinguish electrons from muons: electron will stop in ECL, while muon will continue
- ✓ Electron identification relies on charge particle momentum and energy deposit in ECL
- \checkmark In the barrel and endcap of the detector

 ✓ Amount of light is proportional to the energy deposited in the crystal: can measure the energy of the the particle

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

K_L and muon Identification System: KLM

- ✓ Identify particles that are undetected by inner detectors, i.e., muon and K_L (long-lived kaons)
- ✓ Covers barrel as well as endcap region of the detector
 - Barrel region: Scintillators (2 layers) + RPCs (13 layers)
 - Endcap region: Scintillators
- ✓ Multi-layer sandwich of Fe and active detector layers
- $\checkmark\,$ RPCs: Two parallel electrodes with a gas gap
- ✓ Scintillators: Plastic scintillator strips with silicon photomultiplier

- ✓ In RPCs, charged particles ionize the gas, creating ions and electrons and hence avalanche charge carriers due to potential
- In scintillators, charged particles excite electrons into higher energy bands, and during quenching and de-excitation, generated photons

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Belle II Event Display

Belle II online event display: <u>https://evdisp.belle2.org</u>

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

Belle II Virtual Reality

Seema Choudhury

The Belle II Experiment

US Belle II Summer Workshop

17th June 2024

18

t,

Belle II Luminosity

✓ Luminosity: Rate at which the particles collide, resulting in data that physicists can analyze

More luminosity = more frequent collisions = more data for particle physicist to study

Belle II Physics Program

Belle II Collaboration

