Quantum Decoherence

 $\bullet \bullet \bullet$

2024 US Belle II Summer Workshop June 2024

Hershel Weiner, U. Hawaii

Quantum Decoherence

- A loss of coherence, or entanglement in a state
- Two types:
 - Spontaneous
 - At entangled pair production
 - Environmental
 - Environmental interactions "carry off" coherence from the system
 - Time dependent

Environmental Decoherence (Lindblad Type)

- Probability of detecting same flavor B Mesons as a function of t_{min} and Δt
- Lambda characterizes the level of decoherence in the system
- Acts only during the lifetime of the entangled pair and ends after first meson decay t_{min}

$$P=rac{\cosh(rac{\Delta\Gamma\Delta t}{2})-\mu e^{-\lambda t_{min}}\cos(\Delta m\Delta t)}{2\cosh(rac{\Delta\Gamma\Delta t}{2})}$$

Fitting Data with λ =0

Fitting Data with λ = 1.3

Analysis

- Plot fitted lambda against simulated lambda and fit a line to test for fitting bias
 - Vary the number of bins in each axis to identify the optimal binning strategy
- See a slight increase in performance with more t_{min} bins

Analysis Cont.

• Gauge the sensitivity of the fitter by plotting

- See a <1 fractional error for small lambda

 This is good!
- Expect ~80k hadronic events in our data sample

Thank you!

Sven Vahsen (group leader)

Lucas Stötzer (grad student)

Alexei Sibidanov (postdoc)

Aleczander Paul (undergrad)

Timothy Mahood (grad student)

Lucas and Tim will give a more in depth talk on our group's work on Thursday

Hershel Weiner (undergrad)

Backup Slides

Quantum Decoherence

Binning the Data

- Bin MC data by t_min and delta_t axis with equal number of events in each bin
 0 10,000 events, 16 delta_t bins, 3 t_min bins
- Take fractional count of same flavor events in each bin to derive probability

Deriving the Probability Curve More In-Depth

- Bin the data in each axis according to an exponential scale e^{-t}
 - t_min axis $\tau = 0.8$ ps, delta_t $\tau = 1.6$
- Probability is the fractional count of same flavor events in each bin
- Bin centers are the median of t_min and delta_t in each bin

 $rac{N_{BB}}{N_{BB}+N_{Bar{B}}}$

2D MC Data

- y-axes: t_min
- x-axes: delta_t
- Color axes: probability

t_min Fit Projections

