Charming Searches for the Origin of Matter
 Quinn Campagna
 University of Mississippi

Some Important Terms

- Baryogenesis- production of an excess of matter over anti-matter in the early universe
- CP Asymmetry- a difference in the behavior of a matter particle and it's antimatter partner

What happened to the antimatter?

- The Standard Model (SM) predicts that there should be roughly the same amount of matter and antimatter, which would then annihilate, leaving behind a bunch of light
- We exist and are made of things other than light, so clearly this is an incomplete picture
- There must be some source of CP violation that is not predicted by the SM

Why charm particles?

- SM predicts that CP asymmetries in charm particles should be very small (~10-3-10-4)
- So, if you see any asymmetry it is significant
- Charm baryons in particular don't have many CP asymmetry measurements, so lots of room for new results
- This is the main focus of the Mississippi Belle II group

Results for $\Xi_{c}^{+} \rightarrow \Sigma^{+} h^{+} h^{-}$using MC15rd default MC

- Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.
- $\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-}$

MC (~1680 /fb)	$\mathrm{A}_{\text {raw }} \%\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-}\right)$	$\mathrm{A}_{\text {raw }} \%\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-}\right)$	$\mathrm{A}_{c \mathrm{p}} \%\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{+} \pi^{-}\right)$
Truth-matched	6.27 ± 0.59	6.33 ± 0.15	-0.05 ± 0.61
Fitted	6.22 ± 2.08	6.60 ± 0.44	-0.38 ± 2.13

- $\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-}$

MC ($\sim 1680 / \mathrm{fb})$	$\mathrm{A}_{\text {raw }} \%\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-}\right)$	$\mathrm{A}_{\text {raw }} \%\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-}\right)$	$\mathrm{A}_{\mathrm{cp}} \%\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{+} K^{-}\right)$
Truth-matched	5.46 ± 1.08	6.07 ± 0.79	-0.61 ± 1.34
Fitted	5.91 ± 1.68	6.46 ± 0.73	-0.55 ± 1.83

Results for $\Lambda_{c}^{+} \rightarrow p^{+} h^{+} h^{-}$using MC15rd default MC

- Truth-matching was used to extract the raw asymmetries and compare them with results from the invariant mass fits.
- *Subset of the full MC sample corresponding to $105 / \mathrm{fb}$ was used for $D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$mode.
- $\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} \pi^{+} \pi^{-}$

MC ($\sim 1680 / \mathrm{fb})$	$\mathrm{A}_{\mathrm{raw}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} \pi^{+} \pi^{-}\right)$	$\mathrm{A}_{\mathrm{raw}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} \pi^{+} K^{-}\right)$	$\mathrm{A}_{\mathrm{raw}} \%\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}\right)^{*}$	$\mathrm{~A}_{\mathrm{cp}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} \pi^{+} \pi^{-}\right)$
Truth-matched	3.23 ± 0.17	2.80 ± 0.07	-0.86 ± 0.07	-0.39 ± 0.20
Fitted	3.79 ± 0.53	2.82 ± 0.11	-0.95 ± 0.19	0.02 ± 0.57

- $\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} K^{+} K^{-}$

$\mathrm{MC}(\sim 1680 / \mathrm{fb})$	$\mathrm{A}_{\mathrm{raw}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} K^{+} K^{-}\right)$	$\mathrm{A}_{\mathrm{raw}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} \pi^{+} K^{-}\right)$	$\mathrm{A}_{\mathrm{raw}} \%\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}\right)^{*}$	$\mathrm{~A}_{\mathrm{cp}} \%\left(\Lambda_{c}^{+} \rightarrow \mathrm{p}^{+} K^{+} K^{-}\right)$
Truth-matched	3.69 ± 0.52	3.22 ± 0.06	-0.63 ± 0.05	-0.16 ± 0.53
Fitted	3.33 ± 1.20	3.19 ± 0.13	-0.74 ± 0.19	0.60 ± 1.22

Questions?

