Search for charged-lepton flavor violation in $\Upsilon(2S) \rightarrow \ell^{\mp} \tau^{\pm} (\ell = e, \mu)$ decays at Belle

Rashmi Dhamija (On behalf of Belle & Belle II collaboration)

16th International Workshop on Heavy Quarkonium (QWG 2024)

February 21, 2024

arxiv:2309.02739

1 The Belle Experiment

Ø Motivation

 $\mathfrak{S} \Upsilon(2S) \rightarrow \ell^{\mp} \tau^{\pm} (\ell = e, \mu)$ study at Belle.

Results

The Belle Experiment

Well known to measure the CP-violation in the B-meson decays.

Measured by CUSB.

Integrated luminosity of B factories

- KEKB: An asymmetric-energy e⁻(8 GeV)e⁺(3.5 GeV) collider, collided at the center-of-mass energy of 10.58 GeV.
- Belle detector was placed at the interaction point (IP) of KEKB.
- Collected most of the data at Υ(45) resonance, however it also collected data at Υ(15), Υ(25), Υ(35), and so on.

- The lepton flavor conservation is an intrinsic property of the Standard Model (SM).
- The experimental evidence of lepton flavor violation has already been observed in neutrino oscillation.
- The transitions involving charged-lepton flavor violation (CLFV) are mediated by W^{\pm} bosons and massive neutrinos to account for neutrino oscillation.
- In consequence, the CLFV transitions \Rightarrow significantly suppressed $\sim m_{\nu}^2/m_W^2$. For e.g., $\mathcal{B}(\mu \to e\gamma) \sim 10^{-54}$
- Several new physics models (for e.g. leptoquarks) predict the enhanced BF for such transitions ⇒ high luminosity experiments.
- With the current statistics, CLFV cannot be seen in Υ(4S); it decays immediately to pair of B mesons. So, CLFV in Υ(nS) (n=1,2,3) is a good probe for the physics beyond the SM.
- Any observation of CLFV \Rightarrow clearest evidence of the new physics.

• BaBar, CLEO, and recently Belle searched for CLFV in $\Upsilon(nS) \rightarrow \ell \tau$ (n=1,2,3) decays.

Decay modes	Upper limits	Experiments	References
$B(\Upsilon(1S) o \mu au)$	$< 6 imes 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(1S) o e au)$	$< 2.7 imes 10^{-6}$	Belle	JHEP 05 2022, 095 (2022)
${\cal B}(\Upsilon(1S) o\mu au)$	$< 2.7 imes 10^{-6}$	Belle	JHEP 05 2022, 095 (2022)
$B(\Upsilon(2S) \rightarrow \mu \tau)$	$< 14.4 imes 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(2S) ightarrow e au)$	$< 3.2 imes 10^{-6}$	BaBar	PRL 104, 151802 (2010)
${\cal B}(\Upsilon(2S) o\mu au)$	$< 3.3 imes 10^{-6}$	BaBar	PRL 104, 151802 (2010)
$B(\Upsilon(3S) \rightarrow \mu \tau)$	$< 26.3 imes 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(3S) o e au)$	$< 4.2 imes 10^{-6}$	BaBar	PRL 104, 151802 (2010)
$B(\Upsilon(3S) o \mu au)$	$< 3.1 imes 10^{-6}$	BaBar	PRL 104, 151802 (2010)

Table: Experimental results on $\Upsilon(nS)$ CLFV transitions

• No signal observed yet!

Table: Data sample and the number of $\Upsilon(nS)$ at B-factories and CLEO

Experiment	$\Upsilon(1S)$ data $(N_{\Upsilon(1S)})$	$\Upsilon(2S)$ data $(N_{\Upsilon(2S)})$	$\Upsilon(3S)$ data $(N_{\Upsilon(3S)})$
CLEO	1.1 fb ⁻¹ (20.8 M)	1.3 fb ⁻¹ (9.3 M)	1.4 fb^{-1} (5.9 M)
Belle	6 fb ⁻¹ (119 M)	25 fb^{-1} (158 M)	3 fb ⁻¹ (11 M)
BaBar	-	14 fb ⁻¹ (98.6 M)	30 fb^{-1} (116.7 M)

$\Upsilon(2S) o \ell^{\mp} au^{\pm} (\ell = e, \mu)$ decays at Belle

- We search for decays $\Upsilon(2S) \rightarrow \ell_1^{\mp} \tau^{\pm}$ with $\tau^+ \rightarrow \ell_2^+ \nu_{\ell_2} \overline{\nu}_{\tau}$ or $\tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}$. Charge conjugation is applied.
- We don't consider the combination of the same flavored ℓ_1 and ℓ_2 . For e.g. $\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm} (\tau^+ \rightarrow \mu^+ \nu_{\mu} \overline{\nu}_{\tau})$ to avoid the background contribution from $e^+e^- \rightarrow \mu^+\mu^$ events.
- We also don't use this mode, $\tau^+ \to \pi^+ \overline{\nu}_{\tau}$ since π^+ can fake as μ/e and can contribute to the background.
- Reconstruct: $\Upsilon(2S)$ from ℓ_1 and τ ; τ from ℓ_2 or $\pi^+\pi^0$. $\Upsilon(2S)$ cannot be fully reconstructed!
- Decay modes in study:

•
$$\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm} (\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau}) [\mu - e]$$

- $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm} (\tau^+ \rightarrow \mu^+ \nu_{\mu} \bar{\nu}_{\tau}) [e \mu]$
- $\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm} (\tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}) \ [\mu \pi \pi^0]$
- $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm} (\tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}) [e \pi \pi^0]$
- Trigger simulation is done to simulate the trigger effect.

 $\Upsilon(2S) o \ell^{\mp} au^{\pm} (\ell = e, \mu)$ decays at Belle

- Signal MC: 5 million signal MC events of $\Upsilon(2S) \rightarrow \ell^{\mp} \tau^{\pm}$, where τ can decay to anything are generated with EVTGEN.
- Background MC:
 - $e^+e^-
 ightarrow e^+e^-$, $e^+e^-
 ightarrow \mu^+\mu^-$, $e^+e^-
 ightarrow \tau^+\tau^-$
 - $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$, $e^+e^- \rightarrow e^+e^-e^+e^-$

 - $e^+e^-
 ightarrow q ar q$ (q=u,d,s,c) processes generated with an initial state radiation (ISR) photon.

Most of the background samples $\approx 25 \text{ fb}^{-1}$.

Signal signature of $\Upsilon(2S) o \ell_1^{\mp} \tau^{\pm}$ is a monochromatic momentum of primary lepton (p_1^*) with,

$$p_1^* = \sqrt{rac{(m_{\Upsilon(2S)}^2 - m_{\ell_1}^2 - m_{\tau}^2)^2 - 4m_{\ell_1}^2 m_{\tau}^2}{4m_{\Upsilon(2S)}^2}}$$

peaks around 4.85 GeV/c in the c.m. frame. Signal window: $4.78 < p_1^* < 4.93 \text{ GeV/c} (2\sigma \text{ around the expected } p_1^*)$. Sideband region: $p_1^* \notin [4.7, 5.0]$.

Distribution of p_1^* in MC

Huge background!

Background suppression

- We use the multi-variate analysis (MVA) to further suppress the background.
- Classifier: FastBDT (trained on MC-simulated events).
- Input variable are: $E_{\rm ECL}$, $E_{\rm vis}^*$, $M_{\rm miss}^{*2}$, $\cos \theta_{12}^*$, $\cos \theta_{\rm miss}^*$ based on energy of cluster, missing momentum, and the cosine angles.

We choose $\mathcal{O}_{\text{FBDT}} > 0.94$, which rejects more than 99% of the background events for all the modes while retaining 86%, 66%, 89%, and 66% of the signal events for the μ -e, μ - $\pi\pi^0$, e- μ , and e- $\pi\pi^0$ modes.

Background estimation

The expected number of background events $(N_{\mathrm{exp}}^{\mathrm{bkg}})$ is calulated from,

$$N_{\mathrm{exp}}^{\mathrm{bkg}} = N_{\mathrm{data}}^{\mathrm{SB}}(\mathsf{BDT}) imes \left(rac{N_{\mathrm{MC}}}{N_{\mathrm{MC}}^{\mathrm{SB}}}
ight)$$
 (loose BDT)

where,

 $\textit{N}_{\rm data}^{\rm SB}$ - number of data events in the sideband region

 $\textit{N}_{\rm MC}^{\rm SB}\textsc{-}$ numbers of MC events in the sideband region

 $\textit{N}_{\rm MC^-}$ number of MC events in the signal region.

We estimate N_{exp}^{bkg} with $\mathcal{O}_{FBDT} > 0.4$ as a nominal value and take the difference of the central value from $0.2 < \mathcal{O}_{FBDT} < 0.4$ as a systematic error due to background estimation.

For $\Upsilon(2S) o \mu^{\mp} au^{\pm}$,	$N_{ m exp}^{ m bkg}=3.9\pm1.8$
For $\Upsilon(2S) o e^{\mp} au^{\pm}$,	$N_{\mathrm{exp}}^{\mathrm{bkg}} = 5.9 \pm 2.6$

Distribution of p_1^* in MC and data with $\mathcal{O}_{\mathrm{FBDT}} > 0.94$

For $\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm}$, $N_{\rm obs} = 3$ which is consistent with the expectation. For $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm}$, $N_{\rm obs} = 12$ which is larger than the expectation; the probability of obtaining 12 or more events with $N_{\rm exp}^{\rm bkg} = 5.9 \pm 2.6$ is 8%. Table: Summary of systematic uncertainties.

Systematic uncertainty (%)	
$\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm}$	$\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm}$
2.3	2.3
0.7	0.7
3.4	3.3
0.2	0.2
5.1	5.0
2.3	11.9
7.0	13.5
	$ \begin{array}{c} \text{Systematic un} \\ \Upsilon(2S) \to \mu^{\mp} \tau^{\pm} \\ 2.3 \\ 0.7 \\ 3.4 \\ 0.2 \\ 5.1 \\ 2.3 \\ \hline 7.0 \end{array} $

We use the Feldman-Cousins method to set the upper limits on \mathcal{B} @ 90% CL.

$$\mathcal{B} = rac{N_{
m obs} - N_{
m exp}^{
m bkg}}{\epsilon_{
m sig} imes N_{\Upsilon(2S)}}$$

 $\epsilon_{
m sig}$ - signal reconstruction efficiency. $N_{\Upsilon(25)}$ - number of $\Upsilon(2S)$. = (157.8 ± 3.6) × 10⁶.

Recent results from Belle, arxiv:2309.02739.				
Modes	$\epsilon_{ m sig}$ (%)	$N_{ m exp}^{ m bkg}$	N _{obs}	<i>B</i> @ 90% CL
$\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm}$	12.3 ± 0.8	3.9 ± 1.8	3	$< 0.23 imes 10^{-6}$
$\Upsilon(2S) ightarrow e^{\mp} au^{\pm}$	8.1 ± 1.1	5.9 ± 2.6	12	$< 1.12 imes 10^{-6}$

- $\mathcal{B}(\Upsilon(2S) \to \mu^{\mp} \tau^{\pm}) < 0.23 \times 10^{-6}$ @ 90% CL. $\mathcal{B}(\Upsilon(2S) \to e^{\mp} \tau^{\pm}) < 1.12 \times 10^{-6}$ @ 90% CL.
- We obtain 14 times better results for $\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm}$ and 3 times for $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm}$ from the previous results from the BaBar collaboration.
- Will be published soon! (Accepted by JHEP).

Thank You!

Back Up

Variables	μ-е е-μ	μ - $\pi\pi^0$ e - $\pi\pi^0$	
Impact		<i>dr</i> < 2.0 cm	
parameters		<i>dz</i> < 5.0 cm	
PID	$e(\mu)$ ID> 0.8		
	πID> 0.6		
p_1^*		> 4.5 GeV/c	
E_{γ}	-	$> 50/100/150 { m ~MeV}$	
$M_{\pi^{0}}^{*}$	-	$0.125 < M^*_{\pi^0} < 0.145~{ m GeV}/c^2$	
<i>p</i> ₂ *	$> 0.5 \ { m GeV}/c$	-	
$p_{\pi^+}^*$	-	$0.3 < p^*_{\pi^+} < 4.0 \; { m GeV}/c$	
$p_{\pi^0}^*$	-	> 0.4 GeV/ <i>c</i>	
$M^*_{\pi^+\pi^0}$	-	$0.5 < M^*_{\pi^+\pi^0} < 1.0 ~{ m GeV}/c^2$	
$E_{\rm vis}^*$	$< 9.8 { m ~GeV}$ (e-mode only)		

Table: Lists of all selection criteria corresponding to the variable for each mode.

au decay modes	B.F. (in %)
$ au^+ ightarrow e^+ u_e ar u_ au$	17.82 ± 0.04
$\tau^+ o \mu^+ \nu_\mu \bar{\nu}_\tau$	17.39 ± 0.04
$\tau^+ o \pi^+ \pi^0 \bar{\nu}_{\tau}$	25.49 ± 0.09

Table: Decay modes chosen for τ with their branching fractions (B.F.).

Distributions

- Distinguishing variables used to classify signal and background events are: ۲
 - E_{ECL} It is the sum of the energy of neutral ECL clusters that are related to the particles in the rest of the event in the lab frame.
 - $E_{\rm vis}^*$ It is the sum of the energy of all neutral clusters and charged tracks in the c.m. frame.

 - $M_{\rm miss}^{12}$ It is the invariant mass squared of the missing momentum in the c.m. frame. $\cos \theta_{12}^{2}$ It is the cosine of the angle between p_{1}^{*} and p_{2}^{*} for μ -e and e- μ modes or between p_{1}^{*} and $p_{-+}^* + p_{-0}^*$ for μ - $\pi\pi^0$ and e- $\pi\pi^0$ modes in the c.m. frame.
 - $\cos \theta^*_{\mathrm{miss}}$ It is the cosine of the polar angle of the missing momentum in the c.m. frame.