Recent beauty and charm measurements from Belle and Belle II

La Thuile 2024 Les Rencontres de Physique de la Vallée d'Aoste

Valerio Bertacchi * on behalf of Belle II and Belle collaborations

La Thuile, 6 March 2024

* bertacchi@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Outline and Motivation

We have the **Belle II Run 1** $\Upsilon(4S)$ dataset (362 fb⁻¹) combined to **Belle full dataset** (711 fb⁻¹) They are used to:

- CKM matrix measurement for **SM precision test** in favoured and suppressed *B* decays
- **Substantially improve** *B* decays knowledge :
 - $B \rightarrow D^0 \rho$
 - $B \to D^{(*)} K^- K^{(*)0}_{(S)}$
 - $B^0 \rightarrow \omega \omega$
- Charm sector exploration: $\Lambda_c \rightarrow p K_S^0 \pi^0$
- Access to known rare decays to **investigate New Physics** via Flavor Changing Neutral Current (FCNC)
 - $b \rightarrow s: B \rightarrow K^+ \nu \overline{\nu}$
 - $b \rightarrow u: B \rightarrow h\ell^+\ell^-$
 - radiative: $B \rightarrow \rho \gamma, B \rightarrow \gamma \gamma$
- **Flavor universality** test: $R(D^*)$ and $R(X_{\tau/\ell})$

Belle II & SuperKEKB status

- Completed detector in 2019
- Run 1 (2019-2022)
 - Peak luminosity $4.7 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (reached the 22/06/2022)
 - Integrated luminosity: ~ 424 fb^{-1} (~Babar~0.5 Belle)
- Long Shutdown 1 just finished, Run 2 restarted the in February 2024

B-Factory basics

- $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV} \simeq 2m_B \Rightarrow$ constrained kinematics
- Hermetic detector \Rightarrow complete event reconstruction

- Asymmetric collider ⇒ **Boost of center-of-mass**
- Excellent **vertexing** performance ($\sigma \sim 15 \ \mu m$)

- coherent *BB* pairs production
- Excellent flavour tagging performance

CKM precision measurements

 $|V_{\mu b}|$ from $B^0 \to \pi^- \ell^+ \nu$ and $B^+ \to \rho^0 \ell^+ \nu$

- Measurement of **partial branching fractions** (BF) as a function of $q^2 = (p_B p_h)^2$, $h = \pi, \rho, \ell = e, \mu$
- Simultaneous fit of the two channels of $(\Delta E, M_{bc})$ in bin of q^2

$$\frac{d \mathrm{BR}(B \to h \ell \nu)}{dq^2} \propto |V_{ub}|^2 f_+^2(q^2)$$

• Lattice QCD (LQCD) at high q^2 and/or light-cone sum rule (LCSR) at low q^2 inputs

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.516 \pm 0.027 \pm 0.037) \times 10^{-4}$ $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) = (1.625 \pm 0.063 \pm 0.089) \times 10^{-4}$

 $|V_{ub}|_{B\to\pi\ell\nu_{\ell}} = (3.92\pm0.09\pm0.13\pm0.19)\times10^{-3}.$

$|V_{cb}|$ from $B \to D^* \ell \nu$ angular coefficients

- Extraction of partial branching fraction as a function of hadronic recoil $w = \frac{m_B^2 + m_{D^*}^2 q^2}{2m_B m_{D^*}}$ and angles.
- Measurement of $B \to D^* \ell \nu$ angular coefficients
- Conversion in non-perturbative form factors of the $B\to D^*$ transition (two parameterizations used)
- adding Lattice QCD input (beyond zero-recoil lattice), and external BF, $\mid V_{cb} \mid$ can be extracted

 $|V_{\rm cb}| = (41.0 \pm 0.3 \pm 0.4 \pm 0.5) \times 10^{-3} (\text{BGL}_{332}),$

 $|V_{\rm cb}| = (40.9 \pm 0.3 \pm 0.4 \pm 0.4) \times 10^{-3} ({\rm CLN}),$

stat+syst external BF theory

Compatible with previous results (inclusive or exclusive HFLAV average)

[arXiv:2310.20286]

 $|V_{cb}| \times 10^{3}$

Lepton flavor violation investigated via asymmetries and polarization, but there is no evidence.

37

$\sin 2\beta$ from $B^0 \rightarrow J/\psi K^0_S$ and GFlaT

<u>GFlaT: Graph neural network Flavor Tagger</u>

- Use of particle relations to improve separation B^0 - \overline{B}^0
- Cat. FT: $\varepsilon = (31.68 \pm 0.45)\%$
- GFlaT: $\varepsilon = (37.40 \pm 0.43 \pm 0.36) \% \Rightarrow 18\%$ of gain
- Time-Dependent Asymmetry from $B^0 \rightarrow J/\psi K_{\rm S}^0$
 - **Reference** for measurement of β with gluonic penguins (next slide)
 - Clean, high yield, channels to benchmark Belle II analysis performance
 - Validation of GFlaT performance \Rightarrow 8% reduction of statistical uncertainty

$$S = 0.724 \pm 0.035 \pm 0.014,$$
 C
 $A = -0.035 \pm 0.026 \pm 0.013,$

SM [HFLAV]: $S = 0.695 \pm 0.019$, $A = -0.000 \pm 0.020$

Compatible with SM

 ϕ_1^{eff} from suppressed penguins

- $b \rightarrow q \overline{q} s$ gluonic penguins suppressed in the SM (BR ~ $10^{-5} 10^{-6}$)
 - SM test measuring $\sin 2\beta^{\text{eff}}$:

 $\mathcal{A}_{\rm CP}(t) = \frac{N(B^0 \to f_{\rm CP}) - N(\overline{B}^0 \to f_{\rm CP})}{N(B^0 \to f_{\rm CP}) + N(\overline{B}^0 \to f_{\rm CP})}(t) = (S_{\rm CP} \sin(\Delta m_d t) + A_{\rm CP} \cos(\Delta m_d t))$

where $A_{CP} \simeq 0$, $S_{CP} \simeq \pm \sin 2\beta$ in the SM

- Relatively clean theory prediction
- Access to new physics (NP) amplitudes
- **Experimentally challenging**:
 - Fully hadronic final state with **neutrals**
 - **Low purity** \Rightarrow dedicated continuum suppression algorithms
 - Unique to Belle II

Gluonic penguin: $B^0 \rightarrow \eta' K_{c}^0$

• Two sub-channels:

-
$$\eta' \rightarrow \eta(\rightarrow \gamma \gamma) \pi^+ \pi^-$$

- $\eta' \rightarrow \rho(\rightarrow \pi^+ \pi^-) \gamma$

- High bkg from **random tracks** from $q\overline{q}$ events \Rightarrow dedicated BDT
- Fit $(\Delta E, M_{bc}, BDT output)$
 - Bkg Δt shape from sideband
 - Bkg asymmetry included in the fit
 - validation on $B^+ \to \eta' K^+$

 $S = 0.67 \pm 0.10 \pm 0.04$

 $A = -0.19 \pm 0.08 \pm 0.03$

SM [HFLAV]: $S = 0.63 \pm 0.06$, $A = -0.05 \pm 0.04$

Babar

[arXiv:2402.03713]

Radiative penguin: $B^0 \rightarrow K^0_{\varsigma} \pi^0 \gamma$

- **Photon polarization** constrained by flavor \Rightarrow interference (i.e. TDCPV) helicity suppressed ($\sim m_s/m_b$) $\Rightarrow S_{CP}$ sensitive to NP
- Considered:
 - Exclusive decays $B^0 \to K^{*0}(\to K^0_{\rm S}\pi^0)\gamma$
 - Inclusive decays $B^0 \to K^0_S \pi^0 \gamma$
- Challenge: B^0 vertex **without prompt tracks**
 - $K_{\rm S}^0 \rightarrow \pi^+ \pi^-$ information + beamspot constraint
 - poor-quality vertex events used for time-integrated information
- Fit to $(\Delta E, M_{bc})$

Most precise result and compatible with SM

$$egin{aligned} S(K^{*0}\gamma) &= 0.00^{+0.27+0.03}_{-0.26-0.04}, \ A(K^{*0}\gamma) &= 0.10 \pm 0.13 \pm 0.03, \end{aligned}$$

 $S(K_s^0 \pi^0 \gamma) = 0.04^{+0.45}_{-0.44} \pm 0.10,$ $A(K_{S}^{0}\pi^{0}\gamma) = -0.06 \pm 0.25 \pm 0.07,$

SM [HFLAV]: $S = -0.16 \pm 0.22, A = -0.07 \pm 0.12,$ $S = -0.15 \pm 0.20, A = -0.07 \pm 0.12$

11

Improving B and D decays knowledge

B-tagging at Belle II

In channels with **missing energy** \Rightarrow use of the the **Rest of the Event (ROE)** information:

Step 1: Reconstruction of the partner $B(B_{tag})$ using wellknown channels

- Hadronic tagging: lower efficiency, but full tag reconstruction
- Semileptonic Tagging: higher efficiency, but lower purity

Step 2: Using the $\Upsilon(4S)$ constraint, infer the information on the second $B(B_{sig})$: flavour, charge and kinematic constraints

• **Inclusive Tagging:** signal reconstruction first, and then use of the ROE+ $\Upsilon(4S)$ constraint to add information to the signal

Full Event Interpretation (FEI)

- MVA based B-tagging algorithm
- hierarchical approach to reconstruct $\mathcal{O}(10^4)$ decay chains
- $\varepsilon_{\rm had} \simeq 0.5\,\%$, $\varepsilon_{\rm SL} \simeq 2\,\%$

Branching fraction of $B^+ \rightarrow D^0 \rho(770)^+$

- Motivations:
 - $B^+ \rightarrow D^0 \rho^+$ is one of the main modes of hadronic **B-tagging** \Rightarrow improvement in the BF has a direct impact on large part of Belle II physics program
 - One of the ingredient to test heavy-quark limit and factorization models
- signal extracted from ΔE in bin of **helicity angle**, to separate $B \to D^0 \rho (\to \pi^+ \pi^0)$ signal from bkg $B \rightarrow D^0 \pi^+ \pi^0$
- Systematically limited, by π^0 efficiency

 $\mathcal{B}(B^- \to D^0 \rho^-) = (0.939 \pm 0.021 \pm 0.050)\%,$

Candidates per 10 MeV

World best result,

factor 2 improvement in precision

$B \to D^{(*)}K^-K^{(*)0}_{(S)}$ and $B \to D^{(*)}D^-_{S}$

- $B \rightarrow DKK$ is a completely unexplored sector, few % of B BF expected, only 0.28% measured - simulation and B-tagging techniques will take advantage from an improvement $\int Ldt = 362 \text{ fb}^{-1}$ Belle II preliminary $\int Ldt = 362 \text{ fb}^{-1}$ Belle II preliminary > 3500 () 3000 $\int Ldt = 362 \text{ fb}^{-1}$ Belle II preliminary $B^{-} \rightarrow D^{0} K^{-} K^{*0}$ $\begin{array}{c} \begin{array}{c} & \\ \end{array} \end{array} \begin{array}{c} 700 \\ \end{array} \end{array} \begin{array}{c} B^{-} \rightarrow D^{0} K^{-} K_{S}^{0} \end{array} \end{array}$ **Phase-space Signal** — Total fit $B^{-} \rightarrow D^{0}K^{-}K^{*0}$ Events/0.006 Ge/ Phase-space Signal ······ Signal 160 $B \rightarrow Da_1(1260)$ Signal Background 600 events/0.13 140 DKKπ cross-feed $B \rightarrow D\rho(1450)^{-}$ Signal 2500 B→ Da₁(1640) Signal ents/0 120 500 - Data 100 🛏 Data 🗕 Data 400 80 **a** 1500 60 300 40 nted Ited 1000 200 20 H Weigh Weight 100 500 Pull 0 3.5 1.5 2.5 3 1.5 2.5 2 3.5 3 0.3 -0.1

*m(K⁻K^{*0})* [GeV]

- Observation of 3 new decay modes $(D^+, D^{*0}, D^{*+})K^-K_S^0$, x3 precision on $D^0KK_S^0$ and DKK^{*0} modes (values in the backup) • World best measurements for $B \to D^{(*)}D_s^-$, reconstructed in $D_s^- \to K^-K_S^0$ and $D_s^- \to K^-K^{*0}$ (values in the backup) • Low-mass structures observed in $m(K^-K^{*0})$ system, compatible with $J^P = 1^+$ transition (one or more a_1 resonances) • Low-mass structures observed in $m(K^-K_S^0)$ system, with a dominant $J^P = 1^-$ transition (one or more ρ' resonances)

 $m(K^{-}K_{S}^{0})$ [GeV]

Branching fraction and polarization of $B^0 \to \omega \omega$

- It is a rare **never observed** decay
- The **polarization** f_L and the **direct CP violation** parameter A_{CP} will be useful to understand better the $B \rightarrow VV$ decays
- Untagged measurement, reconstructe
- BDT for bkg suppression
- Flavor tagging exploiting Rest-of-Event
- Simultaneous fit for f_L , A_{CP} to 7 kinematic variables

[arXiv:2401.04646]

$$d \omega \to \pi^+ \pi^- \pi^0$$

First observation of the decay (7.9σ) f_L as expected, no significant A_{CP}

Branching fraction of $\Lambda_c^+ \to p K_S^0 \pi^0$

- Motivation: important to investigate the isospin properties of the Λ_c and to improve the understanding of this class of decay
- Branching fraction measured relatively to $B(\Lambda_c^+ \to pK^-\pi^+)$
- Signal extraction from $m(pK^-\pi^+)$, $m(pK^0_S\pi^0)$

 $\frac{\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)}$ $= 0.343 \pm 0.002 \pm 0.009$

if external is BF assumed

 $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0) = (2.16 \pm 0.01 \pm 0.05 \pm 0.11)\%$

Flavour changing neutral currents 8 lepton flavor universality

Evidence of $B^+ \rightarrow K^+ \nu \overline{\nu}$ (1)

- FCNC, strongly suppressed in the SM: $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6} [\underline{PRD \ 107, \ 014511}]$ <u>(2023)</u>]
 - NP can enhance the BF
- Reconstruction combination of two methods, (almost) statistically indipendent
 - hadronic-tagging: higher purity
 - inclusive tagging: higher efficiency
- **Bkg suppression and control** is extremely challenging: only one K track, two neutrino in the final state

Evidence of $B^+ \rightarrow K^+ \nu \overline{\nu}$ (2)

- Bkg suppressed with two BDT in cascade targeting $q\overline{q}$ and other B decays
- Signal efficiency validated with $B \to K^+ J/\psi (\ \to \mu \mu)$, without matching the muons
- **Bkg control validated** with:
 - $ee \to q\overline{q}$ bkg simulation validated with off-resonance (60 MeV below $\Upsilon(4S)$) data
 - $B \rightarrow X_{\mathcal{C}}(\rightarrow K_L^0 X)$ bkg validated with lepton- and pion-enriched control sidebands
 - Undetected K_L^0 validated with $e^+e^- \rightarrow \gamma \phi(\rightarrow K_L^0 K_S^0)$
 - $B \to K^+ K^0 K^0$ bkg simulation constrained with previous measurements ($B \to K^+ K^0_S K^0_S$, $B \to K^+ K^- K^0_S$)
- **Closure** test: extraction of the BF of $B \to K^0 \pi^+$, as a function of $q_{rec}^2 = s + M_K^2 \sqrt{s} E_K^* \Rightarrow$ found consistent with PDG

Belle II

Evidence of $B^+ \to K^+ \nu \overline{\nu}$ (3)

Hadronic tagging: fit in bin of **BDT output** (η)

0.920.94125 $B^+ \rightarrow K^+ \nu \bar{\nu}$ Belle II preliminary 3000 $B\overline{B}$ $\int \mathcal{L} dt = 362 \, \text{fb}^{-1}$ 100 Candidates/0.1 $c\bar{c}$ $u\bar{u}, d\bar{d}, s\bar{s}$ Candidates 752000Data hadronic tagging 501000 250 Pull b Pull 8 -b0.70.40.50.60.80.91.0 $\eta(\text{BDTh})$ $\mu = 4.6 \pm$ Combined result: $BR(B^+ \to K^+ \nu \nu) =$

Inclusive tagging: fit in bin of **BDT** output (η) and dineutrino mass $q_{\rm rec}^2$

$$1.0(\text{stat}) \pm 0.9(\text{syst})$$

 $[2.4 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

3.5σ above the bkg-only hypothesis 2.7σ above the SM prediction

Branching fraction and isospin asymmetries of $B \rightarrow \rho \gamma$

- Motivations:
 - $b \rightarrow d\gamma$ FCNC \Rightarrow extremely suppressed in the SM, BF are one order of magnitude smaller than $b \rightarrow s\gamma$ and possibly sensitive differently to NP
 - $B \rightarrow \rho \gamma$ has been already observed and the isospin asymmetry is currently 2σ from the SM

•
$$B^+ \to \rho^+ (\to \pi^+ \pi^0) \gamma$$
 and $B^0 \to \rho^0 (\to \pi^+ \pi^-) \gamma$

- Fit to $(\Delta E, M_{hc}, m(\pi\pi))$
- Challenging due to $B \to K^* \gamma$ bkg (when K is misreconstructed)

$$\mathcal{B} \left(B^+ \to \rho^+ \gamma \right) = \left(13.1^{+2.0+1.3}_{-1.9-1.2} \right) \times 10^{-7},$$

$$\mathcal{B} \left(B^0 \to \rho^0 \gamma \right) = \left(7.5 \pm 1.3^{+1.0}_{-0.8} \right) \times 10^{-7},$$

$$A_{\rm CP} \left(B^+ \to \rho^+ \gamma \right) = \left(-8.2 \pm 15.2^{+1.6}_{-1.2} \right) \%,$$

$$A_{\rm I} \left(B \to \rho \gamma \right) = \left(10.9^{+11.2+6.8+3.8}_{-11.7-6.2-3.9} \right) \%,$$

reconstruction

World beast measurement for BFs A₁ compatible with SM

 362 fb^{-1}

Search for $B^0 \rightarrow \gamma \gamma$

Dedicated YSF talk later this afternoon!

- $b \rightarrow d\gamma$ FCNC, particularly sensitive to heavy NP
- Bkg suppression using:
 - high quality, energetic photon requirements
 - rejection of photon from π^0 and η
 - BDT targeting $q\overline{q}$ bkg
- Fit to $(\Delta E, M_{bc}, BDT output)$
- No signal observed (2.5σ significance)
- world best upper limit: 6.40×10^{-8} 90% CL

Search for $b \rightarrow d\ell^+\ell^-$

- Search :
 - $B \to (\eta, \omega, \pi^{+,0}, \rho^{+,0})e^+e^-$
 - $B \rightarrow (\eta, \omega, \pi^0, \rho^+) \mu^+ \mu^-$
- all of these are **never observed** $b \rightarrow d$ **FCNCs**
- Bkg suppression via BDT
- Signal extraction fitting $(\Delta E, M_{bc})$
- No signal observed \Rightarrow set upper limits: $(3.8 4.7) \times 10^{-8}$ 90 CL

Beast UL for all the channels Fist search for these channels

channel	$\mathcal{B}^{\mathrm{UL}}~(10^{-8})$	\mathcal{B} (10 ⁻⁸)
$\begin{array}{c} B^{0} \rightarrow \omega e^{+}e^{-} \\ B^{0} \rightarrow \omega \mu^{+}\mu^{-} \\ B^{0} \rightarrow \omega \ell^{+}\ell^{-} \end{array}$	< 30.7 < 24.9 < 22.0	$\begin{array}{c} -\ 2.1^{+26.5}_{-20.8} \pm 0.2 \\ 7.7^{+10.8}_{-7.5} \pm 0.6 \\ 6.4^{+10.7}_{-7.8} \pm 0.5 \end{array}$
$B^0 ightarrow ho^0 e^+ e^-$	< 45.5	$23.6^{+14.6}_{-11.2}\pm1.1$
$\begin{array}{c} B^+ \rightarrow \rho^+ e^+ e^- \\ B^+ \rightarrow \rho^+ \mu^+ \mu^- \\ B^+ \rightarrow \rho^+ \ell^+ \ell^- \end{array}$	< 46.7 < 38.1 < 18.9	$\begin{array}{c} -38.2^{+24.5}_{-17.2}\pm3.4\\ 13.0^{+17.5}_{-13.3}\pm1.1\\ 2.5^{+14.6}_{-11.8}\pm0.2 \end{array}$

Lepton flavor universality test: $R(D^*)$

- First $R(D^*)$ measurement at Belle II
- Hadronic B tagging
- Reconstructed only $\tau \to \ell \nu \nu$,
- Signal extraction from 2D fit:
 - Missing mass: $M_{\text{miss}}^2 = (p_{e^+e^-} p_{B_{tag}} p_{D^*} p_{\ell})^2$
 - Extra energy on calorimeter $E_{\rm ECL}^{\rm extra}$
- Bkg validation on on multiple data sidebands

 $R(D^*) = 0.262 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.035}{_{-0.032}}(\text{syst}),$

40% precision improvement compared to Belle with the same luminosity

Compatible with SM

Measured also the inclusive: $R(X_{\tau/\ell}) \equiv \mathcal{B}(B \rightarrow X \tau \nu) / \mathcal{B}(B \rightarrow X \ell \nu)$ and it is consistent with SM

[arXiv:2311.07248]

Conclusions

- Shown several analysis which are fully exploiting the available samples before Run 2:
 - Belle II Run 1 sample (362 fb⁻¹)
 - combined Belle+Belle II sample (~1ab⁻¹)
- β^{eff} from gluonic and radiative penguins produces competitive results, exploiting Belle II-unique channels $(B^0 \rightarrow \eta' K_{\rm S}^0, B^0 \rightarrow K_{\rm S}^0 \pi^0 \gamma)$
- We are constantly improving our $B \rightarrow hadron knowledge$, also observing new decay channels ($B \rightarrow D\rho$, $B \to D^{(*)}KK^{(*)}, B \to D^{(*)}D_{G}, B \to \omega\omega$
- Strong push to investigate **FCNC**s:
 - serval new world best upper limits or BF in $b \to d(\gamma)$ transition
 - Evidence of $B \to K^+ \nu \overline{\nu}$ 2.7 σ away from the SM

more luminosity is coming!

Data taking just restarted, with upgraded detector and collider:

Thank you for your attention!

Valerio Bertacchi - bertacchi@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Established by the European Commission

27

Belle II experiment at SuperKEKB collider

SuperKEKB

- Successor of KEKB (1999-2010, KEK, Japan)
- Target peak luminosity: $6 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x 30 of KEKB)

 $250 \,\mu \mathrm{m}\,(\mathrm{Z}) \times 10 \,\mu \mathrm{m}\,(\mathrm{X}) \times 50 \,\mathrm{nm}\,(\mathrm{Y})$

<u>Belle II</u>

[Belle II Technical Design Report, arXiv:1011.0352]

Long shutdown 1 plans

Long shutdown 1 (LS1): data-taking sopped in July 2022

LS1 activities:

- replacement of the **beam-pipe**
- replacement of PMT of central PID detector (**TOP**)
- installation of 2-layer of pixel detector
 - shipped to KEK mid-March
 - final test scheduled in April
- improvement of data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCle40)
- replacement of aging components
- additional shielding against beam backgrounds
- accelerator improvements: injection, non linear-collimators, monitoring

Data taking restated in February 2024!

 $|V_{ub}| \quad (B \rightarrow \pi/\rho \ell^+ \nu): \text{extra info (1)}$

- LQCD: $|V_{ub}|_{B \to \pi \ell \nu_{\ell}} = (3.92 \pm 0.09 \pm 0.13 \pm 0.19) \times 10^{-3}$.
- LQCD+LCSR: $|V_{ub}|_{B\to\pi\ell\nu_{\ell}} = (3.73\pm0.07\pm0.07\pm0.16)\times10^{-3}$.
- LCSR: $|V_{ub}|_{B \to \rho \ell \nu_{\ell}} = (3.20 \pm 0.12 \pm 0.18 \pm 0.26) \times 10^{-3}$,

LQCD+LCSR

$|V_{ub}| \quad (B \rightarrow \pi/\rho \ell^+ \nu): \text{extra info (2)}$

Systematic uncertainties:

~													
Source	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10	q11	q12	q13
Detector effects	2.0	0.9	1.1	1.0	1.0	1.1	1.1	1.0	0.9	1.2	2.3	4.1	5.8
Beam energy	0.6	0.8	0.7	0.8	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.7
MC sample size	4.7	3.8	3.3	3.2	3.2	2.9	3.8	3.7	4.0	4.5	5.9	8.0	13.6
Physics constraints	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
Signal model	0.1	0.1	0.2	0.1	0.0	0.2	0.2	0.4	0.3	0.8	0.9	0.2	4.9
ρ lineshape	0.1	0.1	0.3	0.3	0.2	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.6
Nonresonant $B \to \pi \pi \ell \nu_{\ell}$	0.5	0.6	0.4	0.4	0.5	1.0	1.2	1.0	0.8	1.8	1.2	2.3	14.3
DFN parameters	0.8	0.4	1.5	1.6	1.4	1.7	1.2	0.1	0.7	1.2	2.9	3.5	3.7
$B \to X_u \ell \nu_\ell \text{ model}$	0.2	0.4	0.3	0.4	0.2	0.9	1.1	1.2	1.0	1.3	1.6	0.7	8.7
$B \to X_c \ell \nu_\ell \text{ model}$	1.4	2.0	1.7	1.3	1.3	1.4	1.8	1.6	1.3	1.4	1.1	0.5	1.7
Continuum	15.1	11.3	7.6	7.1	5.8	5.7	8.1	8.3	9.6	10.4	14.5	23.8	34.4
Total syst.	16.8	13.3	10.1	9.6	8.7	8.6	10.7	10.7	11.8	12.8	17.0	26.3	41.8
Stat.	9.8	9.2	7.2	7.3	7.3	7.6	8.4	8.7	9.4	10.1	11.4	14.8	21.2
Total	19.5	16.1	12.4	12.0	11.3	11.5	13.6	13.8	15.1	16.3	20.5	30.2	46.8

• The limiting factor is the **continuum (***q***q) description**, obtained from **offresonance data** \Rightarrow only 42 fb⁻¹ 60-MeV shifted sample available

|V_{cb}| (angular coefficients): extra info

- Reconstruction: Hadronic tagging
- Tested FLV-sensitive parameters:
 - Lepton forward-backwoard asymmetry
 - D* logitudinal polarization
 - $S_i \propto J_i$ parameters from [EPJC 81, 984 (2021)]

Systematic uncertainties: dominated by MC sample size

TABLE I. Compatibility of the lepton flavor universality observables with the SM expectation. The $\Delta X = X^{\mu} - X^{e}$ are the observables testing the lepton flavor universal by calculating the difference between the decays with muons and electrons.

Observable	χ^2 / ndf	p-value
$\Delta A_{ m FB}$	1.7 / 4	0.79
$\Delta F_{ m L}(D^*)$	2.3 / 4	0.67
$\Delta \hat{J}_{1s}$	5.3 / 4	0.26
$\Delta \hat{J}_{1c}$	4.2 / 4	0.38
$\Delta \hat{J}_{2s}$	4.6 / 4	0.33
$\Delta \hat{J}_{2c}$	5.0 / 4	0.28
$\Delta \hat{J}_3$	7.4 / 4	0.12
$\Delta \hat{J}_4$	2.5 / 4	0.64
$\Delta \hat{J}_5$	4.8 / 4	0.31
$\Delta \hat{J}_{6s}$	2.1 / 4	0.72
$\Delta \hat{J}_{6c}$	1.1 / 4	0.89
$\Delta \hat{J}_7$	1.6 / 4	0.81
$\Delta \hat{J}_8$	3.3 / 4	0.51
$\Delta \hat{J}_9$	4.6 / 4	0.33
$\Delta \hat{J}_i$	41 / 48	0.76

Time-Dependent CPV analysis scheme

CP-asymmetry in interference between mixing and decay:

$$\mathcal{A}_{\rm CP}(t) = \frac{N(B^0 \to f_{\rm CP}) - N(\overline{B}^0 \to f_{\rm CP})}{N(B^0 \to f_{\rm CP}) + N(\overline{B}^0 \to f_{\rm CP})}(t) = (S_{\rm CP} \sin(\Delta m_d t) + A_{\rm CP} \cos(\Delta m_d t))$$

with S_{CP} : time-dependent asymmetry and A_{CP} : direct *CP*-asymmetry.

 $B^0 - \overline{B}^0$ mixing:

$$\mathsf{mix}(t) = \frac{N(B^0 \to B^0) - N(B^0 \to \overline{B}^0)}{N(B^0 \to B^0) + N(B^0 \to \overline{B}^0)}(t) = \cos(\Delta m_d t)$$

with Δm_d the oscillation frequency.

[From Thibaud Humair, Moriond EW 22]

$B^0 \rightarrow J/\psi K_S^0$ and GFlaT: extra info

- GFlat performance evaluated on $B_{sig}^0 \rightarrow D^{*-}\pi^+$ sample
- Systematic uncertainties:

Source	$\varepsilon_{ m tag}$ [%]	S	C
Detector alignment	0.08	0.005	0.003
Interaction region	0.16	0.002	0.002
Beam energy	0.03	< 0.001	0.001
ΔE -fit background model	0.11	0.001	0.001
ΔE -fit signal model	0.08	0.003	0.006
sWeight background subtraction	0.24	0.001	0.001
Fixed resolution-function parameters	0.07	0.004	0.004
$ au$ and Δm_d	0.06	0.001	< 0.001
$\sigma_{\Delta t}$ binning	0.04	< 0.001	< 0.001
Δt -fit bias	0.09	0.002	0.005
CP violation in B_{tag} decay		0.011	0.006
$B^0 \to D^{(*)-} \pi^+$ sample size		0.004	0.007
Total systematic uncertainty	0.36	0.014	0.013
Statistical uncertainty	0.43	0.035	0.026

• Systematic uncertainties:

So Sig Sx C_E Sig Δt Δt \mathbf{Fl} au_B Fit Tr M Bea B-1 Tag BB Ca Tot

urce	$C_{\eta' K_S^0}$	$S_{\eta' K_S^0}$
gnal and continuum yields	< 0.001	0.002
F and $B\overline{B}$ yields	< 0.001	0.006
BDT mismodeling	0.004	0.010
gnal and background modeling	0.020	0.014
oservable correlations	0.008	0.001
t resolution fixed parameters	0.005	0.009
t resolution model	0.004	0.019
avor tagging	0.007	0.004
$_{0} { m and} \Delta m_{d}$	< 0.001	0.002
t bias	0.003	0.002
acker misalignment	0.004	0.006
omentum scale	0.001	0.001
am spot	0.002	0.002
meson motion in the $\Upsilon(4S)$ frame	< 0.001	0.017
g-side interference	0.005	0.011
B background asymmetry	0.008	0.006
andidate selection	0.007	0.009
otal	0.027	0.037

 $B^0 \to K^0_S \pi^0 \gamma$: extra info

• Systematic uncertainties

	K^*	$^{\circ 0}\gamma$	K_S^0	$\pi^0\gamma$
Source	S	C	S	C
E and p scales	± 0.017	± 0.015	± 0.083	± 0.047
Vertex measurement	± 0.021	± 0.009	± 0.023	± 0.036
Flavor tagging	± 0.005	$^{\mathrm +0.012}_{\mathrm -0.009}$	± 0.008	$^{+0.013}_{-0.009}$
Event-by-event fractions	± 0.003	$^{+0.004}_{-0.003}$	± 0.032	± 0.013
Resolution functions	± 0.014	± 0.009	± 0.032	± 0.013
Physics parameters	< 0.001	< 0.001	± 0.003	< 0.001
$B\overline{B}$ asymmetries	$^{+0.010}_{-0.021}$	± 0.022	$^{+0.023}_{-0.015}$	$^{+0.032}_{-0.033}$
Tag-side interference	< 0.001	-0.002	+0.001	+0.001
Total	$^{+0.033}_{-0.037}$	$^{+0.032}_{-0.031}$	$^{+0.100}_{-0.098}$	$^{+0.071}_{-0.070}$

$B^+ \rightarrow D^0 \rho(770)^+$: extra info

- signal extracted from ΔE in bin of **helicit** angle, to separate $B \to D^0 \rho (\to \pi^+ \pi^0)$ s from bkg $B \to D^0 \pi^+ \pi^0$
- non-uniform binning to have $\cos\theta_{\rm hel}$ unif distribution for the signal
- Template fit to the signal and bkg distribution

Systematic uncertainties

ty	Source	Relative uncertainty
sional	$N_{B\overline{B}}$	1.5
Signat	f^{+-}	2.4
	$\mathcal{B}_{ ext{sub}}$	0.8
-	Fit modelling	1.7
ГОГМ	π^0 efficiency	3.7
	Particle-identification efficiency	0.6
	Continuum-suppression efficiency	1.5
utions	Tracking efficiency	0.7
	Total	5.3

 $B \to D^{(*)}K^-K^{(*)0}_{(S)}$ and $B \to D^{(*)}D^-_s$: extra info (1)

bkg-subtracted and efficiency corrected $m(K^-K)$ distributions

 $B \to D^{(*)}K^-K^{(*)0}_{(S)}$ and $B \to D^{(*)}D^-_s$: extra info (2)

Branching fractions:

Channel	Yield (K_S^0 / K^{*0})	Average $\varepsilon~(K^0_S~/~K^{*0})$	$B[10^{-4}]$
$B^- \rightarrow D^0 K^- K_S^0$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$
$\overline{B}{}^{0} \rightarrow D^{+}K^{-}K_{S}^{0}$	105 ± 14	0.048	$0.82 \pm 0.12 \pm 0.05$
$B^- \rightarrow D^{*0} K^- \tilde{K}^0_S$	51 ± 9	0.044	$1.47 \pm 0.27 \pm 0.10$
$\overline{B}{}^{0} \rightarrow D^{*+}K^{-}K_{S}^{0}$	36 ± 7	0.046	$0.91\pm0.19\pm0.05$
$B^- \rightarrow D^0 K^- K^{* \widetilde{0}}$	325 ± 19	0.043	$7.19\pm0.45\pm0.33$
$\bar{B}^0 \rightarrow D^+ K^- K^{*0}$	385 ± 22	0.021	$7.56 \pm 0.45 \pm 0.38$
$B^- ightarrow D^{*0} K^- K^{*0}$	160 ± 15	0.019	$11.93 \pm 1.14 \pm 0.93$
$\bar{B}^0 \rightarrow D^{*+} K^- K^{*0}$	193 ± 14	0.020	$13.12 \pm 1.21 \pm 0.71$
$B^- \rightarrow D^0 D_s^-$	144 ± 12 / 153 ± 13	0.04 / 0.09	$95\pm 6\pm 5$
$\overline{B}{}^0 \rightarrow D^+ D^s$	145 ± 12 / 159 ± 13	0.02 / 0.05	$89\pm5\pm5$
$B^- \rightarrow D^{*0} D_s^-$	$30 \pm 6 \ / \ 29 \pm 7$	0.02 / 0.04	$65\pm10\pm6$
$\overline{B}{}^0 \to D^{*+} D^s$	43 ± 7 / 37 ± 7	0.02 / 0.04	$83\pm10\pm6$

 B^0 $\rightarrow \omega \omega$: extra info

Fit variables:

TABLE I. Systematic uncertainties on \mathcal{B} , f_L , and A_{CP} . Those listed in the upper part are additive and included in the significance calculation as discussed in the text. Those listed in the lower part are multiplicative.

Source	\mathcal{B} (%)	f_L	A_{CP}
Best candidate selection	3.0	0.07	0.04
Signal PDF	7.7	0.10	0.10
Fit bias	3.0	0.01	0.01
Background PDF	0.7	0.00	0.01
Tracking efficiency	1.4	0.00	0.00
π^0 efficiency	4.0	0.00	0.00
PID efficiency	3.5	0.00	0.00
Continuum suppression	2.4	_	_
Flavor mistagging	_	_	0.02
Detection asymmetry	_	_	0.01
$N_{B^0\overline{B}^0}$	2.8	_	_
$\mathcal{B}(\omega \to \pi^+ \pi^- \pi^0) \times \mathcal{B}(\pi^0 \to \gamma \gamma)$	1.6	_	_
Total	11.4	0.13	0.11

Evidence of $B^+ \rightarrow K^+ \nu \overline{\nu}$ (1)

- Motivations: FCNC, strongly suppressed in the SM: $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [arxiv:2207.13371]
 - NP can enhance the BF
- Reconstruction: co tagging and inclus
- Bkg suppressed with multiple BDT in cascade

 $\mu = 4.6 \pm 1.0 (\text{stat}) \pm 0.9 (\text{syst})$

 $BR(B^+ \to K^+ \nu \nu) = [2.4 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

 3.5σ above the bkg-only hypothesis 2.7σ above the SM prediction

 $B^+ \rightarrow K^+ \nu \overline{\nu}$: extra info (1)

Efficiency:

Results separated in the two tagging approaches:

Combination:

- profile likelihood fit
- including correlation in syst
- inclusive tagging fit

Hadronic tag: $\mu = 2.2^{+1.8}_{-1.7} + 1.6_{-1.1}$, BF = $(1.1^{+0.9}_{-0.8} + 0.8_{-0.5}) \times 10^{-5} 1.1\sigma$ above bkg only, 0.6σ above SM

- Inclusive tag: $\mu = 5.4 \pm 1.0 \pm 1.1$, BF = $(2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$, 3.5σ above bkg only, 2.9σ above SM

$B^+ \rightarrow K^+ \nu \overline{\nu}$: extra info (2)

Systematics inclusive tagging

Source

Systematics hadronic tagging

Normalization Normalization Leading B-deca Branching fract Branching fract Branching fract Branching fract Continuum-bac Number of $B\overline{B}$ Track finding efficiency Signal-kaon PID Extra-photon multiplicity $K_{\rm L}^0$ efficiency Signal SM form-factors Signal efficiency Simulated-sample size

Source		Correction	Correction		Uncertainty ers size	Ι
Normalization of BB backgrou	ind			Global, 2	50%	
Normalization of continuum ba	ackground			Global, 5	50%	
Leading B -decay branching fra	ctions	—		Shape, 5	O(1%)	
Branching fraction for $B^+ \to R^-$	$K^+K^0_{ m L}K^0_{ m L}$	q^2 dependent $O(1)$.00%)	Shape, 1	20%	
p-wave component for $B^+ \to R$	$K^+K^0_{ m s}K^0_{ m L}$	q^2 dependent $O(1)$.00%)	Shape, 1	30%	
Branching fraction for $B \to D^*$	**	—		Shape, 1	50%	
Branching fraction for $B^+ \to R^-$	$K^+n\bar{n}$	q^2 dependent $O(1)$.00%)	Shape, 1	100%	
Branching fraction for $D \to K_1$	$^0_{ m L}X$	+30%		Shape, 1	10%	
Continuum-background model	ing, BDT_c	Multivariate $O(1)$	LO%)	Shape, 1	100% of correction	ı
Integrated luminosity		_		Global, 1	1%	
Number of $B\overline{B}$				Global, 1	1.5%	
Off-resonance sample normaliz	ation	—		Global, 1	5%	
Track-finding efficiency		—		Shape, 1	0.3%	
Signal-kaon PID		p, θ dependent $O(10$	-100%)	Shape, 7	O(1%)	
Photon energy		—		Shape, 1	0.5%	
Hadronic energy		-10%		Shape, 1	10%	
$K^0_{ m L}$ efficiency in ECL		-17%		Shape, 1	8%	
Signal SM form-factors		q^2 dependent $O(1\%)$		Shape, 3	O(1%)	
Global signal efficiency				Global, 1	3%	
Simulated-sample size				Shape, 156	<i>O</i> (1%)	
	(Correction	Uncert par	tainty type, ameters	Uncertainty size	Im
of <i>BB</i> background		_	G	lobal, 1	30%	
of continuum background			G	lobal, 2	50%	
v branching fractions			Sł	nape. 3	O(1%)	
ion for $B^+ \to K^+ K^0_{\rm I} K^0_{\rm I}$	$q^2 \mathrm{depe}$	endent $O(100\%)$	Sł	hape, 1	20%	
ion for $B \to D^{**}$	1	_	SI	nape, 1	50%	
ion for $B^+ \to K^+ n \bar{n}$	$q^2 \mathrm{depe}$	endent $O(100\%)$	Sł	nape, 1	100%	
ion for $D \to K^0_{\rm L} X$		+30%	Sł	nape, 1	10%	
kground modeling, BDT _c	Multiv	variate $O(10\%)$	Sł	nape, 1 1	100% of correction	
		_ ` `	G	lobal, 1	1.5%	

 p, θ dependent O(10 - 100%)

 $n_{\gamma \text{extra}}$ dependent O(20%)

 q^2 dependent O(1%)

Global, 1

Shape, 3

Shape, 1

Shape, 1

Shape, 3

Shape, 6

Shape, 18

0.3%

O(1%)

O(20%)

17%

O(1%)

16%

O(1%)

Rare B decays

- sensitive to NP
- SM BR $\mathcal{O}(10^{-5} 10^{-7})$ with 10-30% uncertainty, but ratios, asymmetries, angular distributions can be used
- Opportunity to test LFU and LFV (eg. $R_{K^{(*)}}, B \rightarrow K\ell\ell'$)
 - NB: Belle II has similar (and good) performance both in electron and muons
- Most of the channels in Belle II will become **competitive with few ab^{-1}**, now Belle II is statistically limited
- Several unique opportunities in Belle II (radiative, multiple neutrinos)

• $b \rightarrow s$ transitions are **FCNC** \Rightarrow SM suppressed (forbidden at tree level) \Rightarrow

 $B \rightarrow \rho \gamma$: extra info

Yields and efficiencies

Mode	ϵ [%]	N_S	$N_{q\overline{q}}$
Belle $B^+ \to \rho^+ \gamma$	5.5 ± 0.5	19.7 ± 4.0	14.0 ± 0.7
Belle $B^- \to \rho^- \gamma$	5.5 ± 0.5	16.7 ± 3.8	12.9 ± 0.7
Belle $B^0 \to \rho^0 \gamma$	10.3 ± 0.4	41.7 ± 7.2	53.8 ± 1.6
Belle II $B^+ \to \rho^+ \gamma$	11.0 ± 1.1	20.7 ± 4.2	23.3 ± 1.1
Belle II $B^- \to \rho^- \gamma$	11.0 ± 1.1	17.6 ± 4.0	23.1 ± 1.1
Belle II $B^0 \to \rho^0 \gamma$	14.9 ± 0.5	31.1 ± 5.4	55.9 ± 1.8

Systematics

Source	$\mathcal{B}_{ ho^+\gamma} imes 10^8$	$\mathcal{B}_{ ho^0\gamma} imes 10^8$	A_{I}
Reconstruction	4.1	1.3	1.4%
Selection	9.0	3.4	4.0%
Fixed PDF	1.1	2.7	1.8%
Signal shape	4.7	3.0	3.1%
Histogram PDF	1.0	0.6	0.5%
$K^*\gamma$ yield	3.4	5.4	3.1%
$B\overline{B}$ peaking yield	2.2	0.8	0.9%
$B\overline{B}$ peaking $A_{ m CP}$	0.1	0.0	0.1%
Number of $B\overline{B}$'s	1.7	1.4	0.3%
Other parameters	4.0	3.6	3.9%
Total	12.5	8.6	7.5%

 $b \rightarrow d\ell^+ \ell^- : extra info$

• Full list of limits

channel	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	arepsilon~(%)	$\mathcal{B}^{\mathrm{UL}}~(10^{-8})$	$\mathcal{B}~(10^{-8})$
$B^{0} \rightarrow \eta e^{+} e^{-}$ $B^{0} \rightarrow \eta \mu^{+} \mu^{-}$ $B^{0} \rightarrow \eta \ell^{+} \ell^{-}$	$\begin{array}{c} 0.0^{+1.4}_{-1.0} \\ 0.8^{+1.5}_{-1.1} \\ 0.5^{+1.0}_{-0.8} \end{array}$	$3.1 \\ 4.2 \\ 1.8$	$3.9 \\ 5.9 \\ 4.9$	< 10.5 < 9.4 < 4.8	$\begin{array}{c} 0.0^{+4.9}_{-3.4} \pm 0.1 \\ 1.9^{+3.4}_{-2.5} \pm 0.2 \\ 1.3^{+2.8}_{-2.2} \pm 0.1 \end{array}$
$\begin{array}{c} B^{0} \rightarrow \omega e^{+}e^{-} \\ B^{0} \rightarrow \omega \mu^{+}\mu^{-} \\ B^{0} \rightarrow \omega \ell^{+}\ell^{-} \end{array}$	$\begin{array}{r}-0.3^{+3.2}_{-2.5}\\1.7^{+2.3}_{-1.6}\\1.0^{+1.8}_{-1.3}\end{array}$	$3.7 \\ 5.5 \\ 3.6$	$1.6 \\ 2.9 \\ 2.2$	$< 30.7 \\ < 24.9 \\ < 22.0$	$\begin{array}{c} -\ 2.1^{+26.5}_{-20.8} \pm 0.2 \\ 7.7^{+10.8}_{-7.5} \pm 0.6 \\ 6.4^{+10.7}_{-7.8} \pm 0.5 \end{array}$
$\begin{array}{c} B^{0} \rightarrow \pi^{0} e^{+} e^{-} \\ B^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-} \\ B^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-} \end{array}$	$\begin{array}{r}-2.9^{+1.8}_{-1.4}\\-0.5^{+3.6}_{-2.7}\\-1.8^{+1.6}_{-1.1}\end{array}$	$4.0 \\ 6.1 \\ 2.9$	$6.7 \\ 13.7 \\ 10.2$	$< 7.9 \\ < 5.9 \\ < 3.8$	$egin{array}{l} -5.8^{+3.6}_{-2.8}\pm 0.5\ -0.4^{+3.5}_{-2.6}\pm 0.1\ -2.3^{+2.1}_{-1.5}\pm 0.2 \end{array}$
$B^+ ightarrow \pi^+ e^+ e^-$	$0.1^{+2.5}_{-1.6}$	5.0	11.5	< 5.4	$0.1^{+2.7}_{-1.8}\pm 0.1$
$B^0 ightarrow ho^0 e^+ e^-$	$5.6\substack{+3.5 \\ -2.7}$	10.8	3.2	< 45.5	$23.6^{+14.6}_{-11.2}\pm1.1$
$ \begin{array}{c} B^+ \rightarrow \rho^+ e^+ e^- \\ B^+ \rightarrow \rho^+ \mu^+ \mu^- \\ B^+ \rightarrow \rho^+ \ell^+ \ell^- \end{array} $	$\begin{array}{r}-4.4\substack{+2.3\\-2.0}\\3.0\substack{+4.0\\-3.0}\\0.4\substack{+2.3\\-1.8}\end{array}$	$5.3 \\ 8.7 \\ 3.0$	$1.4 \\ 2.9 \\ 2.0$	< 46.7 < 38.1 < 18.9	$\begin{array}{c} -38.2^{+24.5}_{-17.2}\pm3.4\\ 13.0^{+17.5}_{-13.3}\pm1.1\\ 2.5^{+14.6}_{-11.8}\pm0.2 \end{array}$

 $\Lambda_c^+ \to p K_S^0 \pi^0$: extra info

Sources

Systematics:

 K_S^0 reconstruction

 π^0 reconstruction

PID of K^- and π^+

Fit procedure

MC statistics

Dalitz plot binning

 $\mathcal{B}(\pi^0 \to \gamma \gamma)$ and $\mathcal{B}(K^0_S \to \pi^+ \gamma)$

Total

Dalitz distributions:

$\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0) \ \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$				
	1.57	_		
	1.54			
	_	0.34		
	0.71	0.18		
	0.49	0.31		
	0.62	0.15		
$\pi^{-})$	0.05			
	2.42	0.64		

$R(D^*)$: extra info

Systematics

Source	Uncertainty
PDF shapes	$^{+9.1\%}_{-8.3\%}$
Simulation sample size	$+7.5\%\ -7.5\%$
$\overline{B} \to D^{**} \ell^- \overline{\nu}_{\ell}$ branching fractions	$^{+4.8\%}_{-3.5\%}$
Fixed backgrounds	$^{+2.7\%}_{-2.3\%}$
Hadronic B decay branching fractions	$^{+2.1\%}_{-2.1\%}$
Reconstruction efficiency	$^{+2.0\%}_{-2.0\%}$
Kernel density estimation	$^{+2.0\%}_{-0.8\%}$
Form factors	$^{+0.5\%}_{-0.1\%}$
Peaking background in ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$
$\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	$^{+0.2\%}_{-0.2\%}$
$R(D^*)$ fit method	$^{+0.1\%}_{-0.1\%}$
Total systematic uncertainty	$^{+13.5\%}_{-12.3\%}$

Yields: $B \rightarrow D^* \tau \nu$: ~108

Parameter	Observed (expected) yield				
	$D^{*+} \rightarrow D^0 \pi^+$	$D^{*+} \rightarrow D^+ \pi^0$	$D^{*0} \rightarrow D^0 \pi^0$		
$N_{D^*\tau\nu}^{i} + N_{D^*\tau\nu,\ell\text{-misID}}^{i}$	50.9 ± 7.8	7.8 ± 1.2	49.2 ± 7.5		
$N^i_{D^*\ell\nu}$	$1084.6 \pm 36.7 \ (1041.0 \pm 11.2)$	$137.9 \pm 6.6 ~(133.2 \pm 4.3)$	$940.9 \pm 36.0 \ (927.2 \pm 10.7)$		

Bkg control studies:

- $B \rightarrow D^* \ell \nu$ validated in low q^2 sideband
- $B \to D^{**} \ell \nu$ validated in the extra- π^0 control sample
- Fake D^* bkg validated in $\Delta m = m_{D^*} m_D$ sideband

Belle II performance

[From D. Tonelli]

