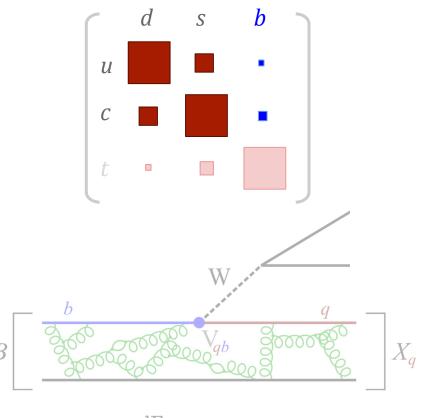
Recent results in *B*-physics

Peter Mandeville Lewis | The University of Hawaii at Manoa DPF-Pheno 2024 | Pittsburgh


Why *b*-physics?

Rich flavor dynamics

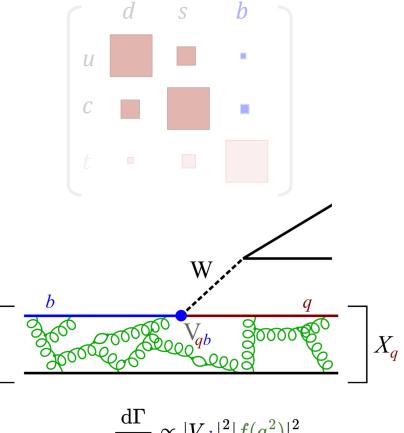
- **CKM** close to unit matrix: loops, boxes, large CP asymmetries, flavor oscillations are visible
- Straightforward NP enhancements to heavy b vertex could be competitive to small SM contributions

Theoretically tractable

- **Hadronic component** is (usually) **factorizable** from weak component
- Heavy quark methods useful, with $\Lambda_{\rm OCD}/m_h \sim 0.1$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \propto |V_{qb}|^2 |f(q^2)|^2$$

A powerful and clean window to NP...


Why *b*-physics?

Rich flavor dynamics

- **CKM** close to unit matrix: loops, boxes, large CP asymmetries, flavor oscillations are visible
- Straightforward NP enhancements to heavy **b** vertex could be competitive to small SM contributions

Theoretically tractable

- **Hadronic component** is (usually) **factorizable** from weak component
- Heavy quark methods useful, with $\Lambda_{\rm OCD}/m_b \sim 0.1$

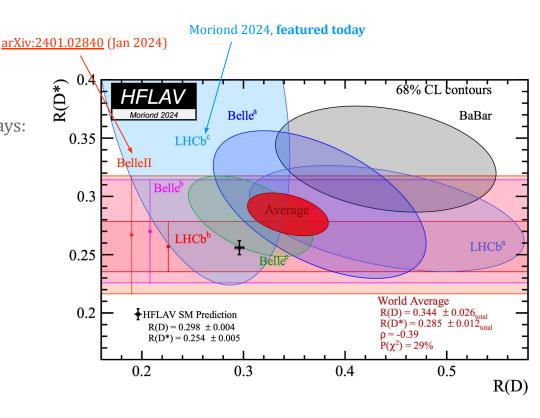
$$rac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \propto |V_{m{q}b}|^2 |f(q^2)|^2$$

A powerful and clean window to NP...

Hot topic: Lepton Universality

LU: no lepton flavor preference in nature

Evidence of *violation* (LUV) in semileptonic decays:


$$R(H_{\tau/\ell}) = \frac{\mathcal{B}(B \to H\tau\nu)}{\mathcal{B}(B \to H\ell\nu)}$$

$$H = D, D^*, X, \pi, \dots$$

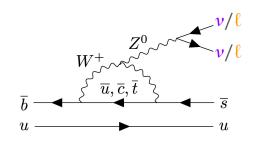
$$\ell = e, \mu$$
(next decade?)

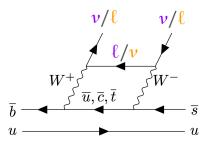
(interesting hints in angular observables too!)

"Traditional" modes

Longstanding ~3σ tension with SM from BaBar, Belle, LHCb, Belle II... a sign of NP?

New! Featured today

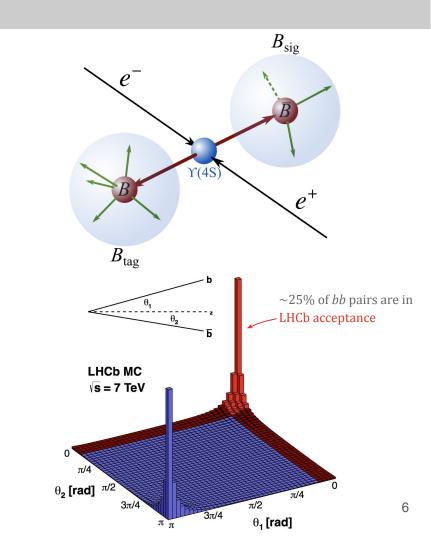

Hot topic: flavor-changing neutral currents


No tree-level SM process

- $b \rightarrow s\ell\ell$: experimentally clean, theoretically more challenging (factorization breaks down due to photon exchange)
- $b \rightarrow svv$: theoretically clean (no photon exchange), experimentally challenging (two missing neutrinos)

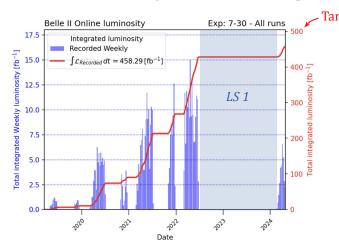
Signs of tension with SM:

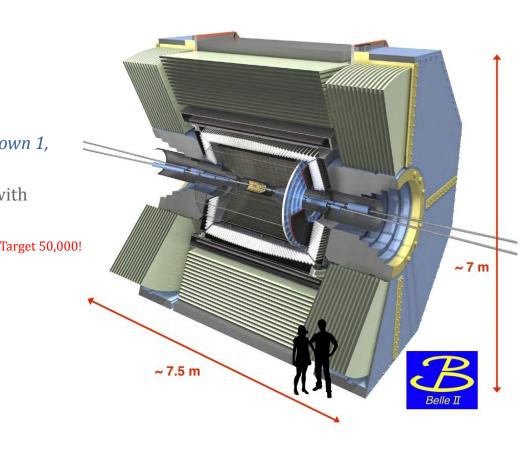
- Branching fractions and angular observables
- R(K) and $R(K^*)$ [μ/e ratios]... gone now? (thanks LHCb!)


How?

B-factories (BaBar, Belle, Belle II)

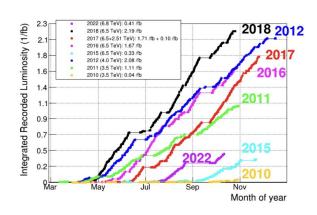
- e^+e^- colliders on $\Upsilon(4S)$ resonance $(\to B\overline{B})$
- Low cross-section → high luminosity
- Full kinematics known
- Spherical events
- No pileup

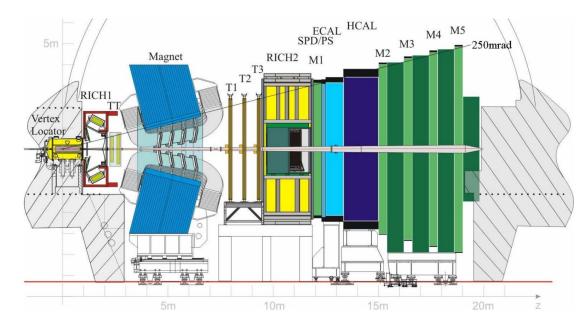

Hadron colliders (LHCb, ATLAS, CMS...)


- Parton collisions produce $b\overline{b}$ pairs
- Hadronize into all sorts of *B* mesons
- High cross-section
- Full kinematics not known
- Production preferentially along beam

Belle II

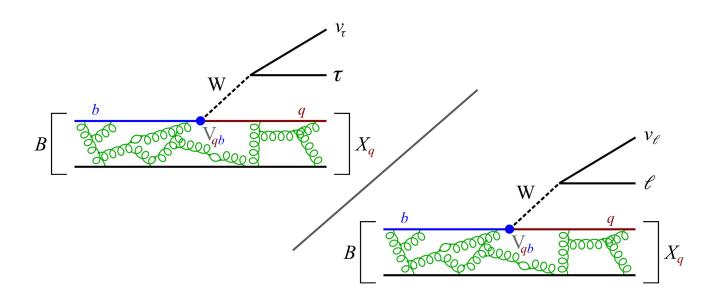
- Hermetic detector
- Modest boost; *B* mesons fly \sim 100 μ m
- Ideal for **neutral** or **invisible** final states
- World-record luminosity before Long Shutdown 1, which has just ended
- Current results use ≤362 fb⁻¹: competitive with BaBar and Belle already, but <**1% of target**





LHCb

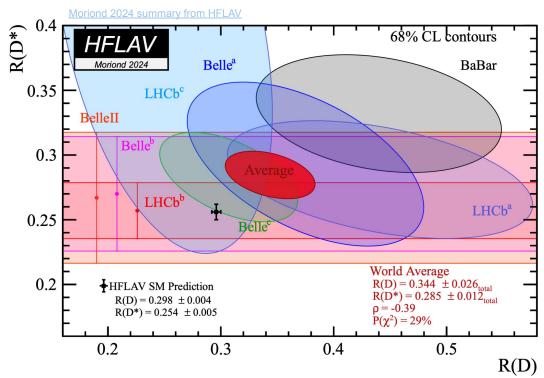
- Single-arm forward spectrometer
- Large boost; B mesons fly ~ 1 cm (easily resolvable)
- Access to all *b*-hadron species
- Excels at charged particle final states, notably muons



Recent results: Lepton Universality

Belle II: $R(X_{\tau/\ell})$

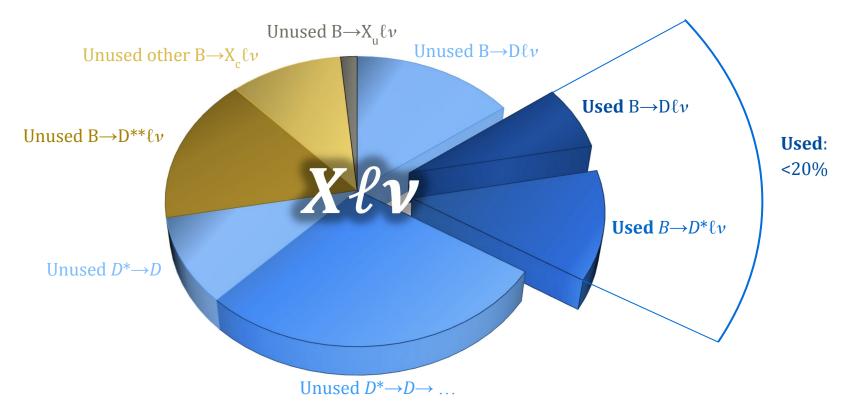
First measurement of $R(X_{ au/\ell})$ as an inclusive test of the b o c au
u anomaly



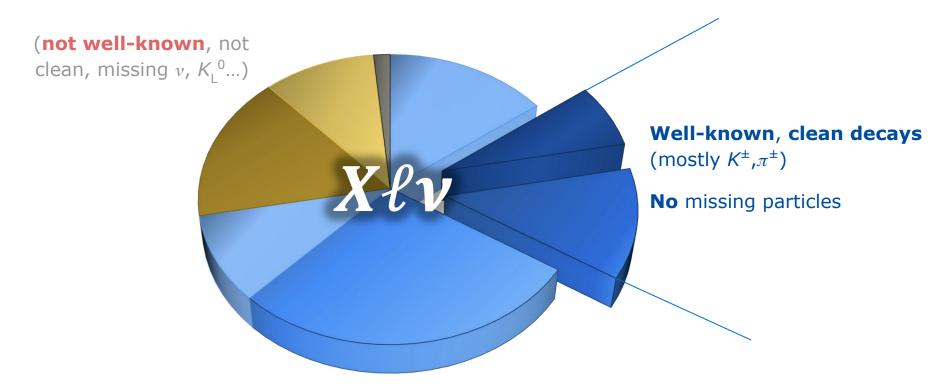
The $b \rightarrow c\tau v$ excess

Q: What if the "anomaly" is just a shared systematic?

Or a problem with the (shared) theory description?


Is there anything we can do except **measure R(D)** and **R(D*)** over and over again?

Consider

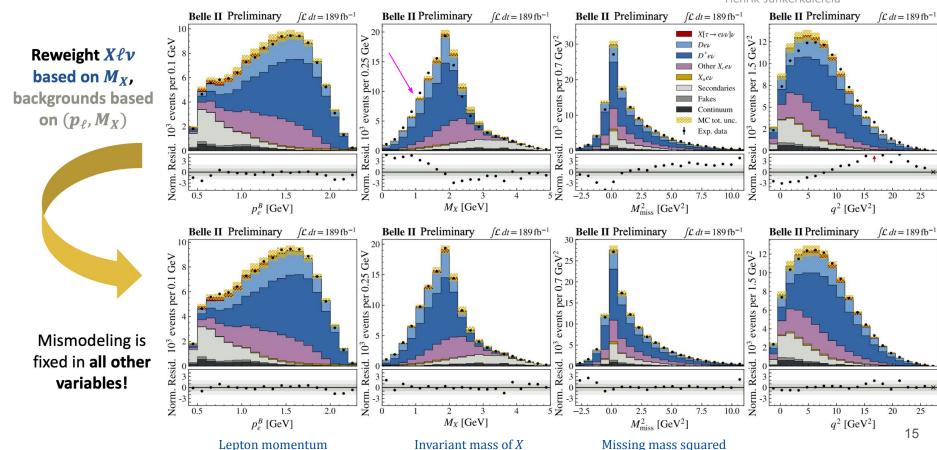


Composition of $B \rightarrow X \ell \nu$ events

Composition of $B \rightarrow X \ell v$ events

So then: how can we use "not well-known" as the signal?

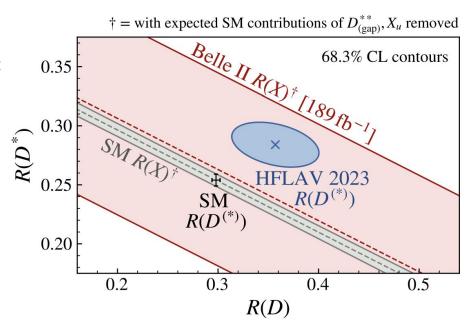
General strategy


Tag-side B meson

Data-driven corrections

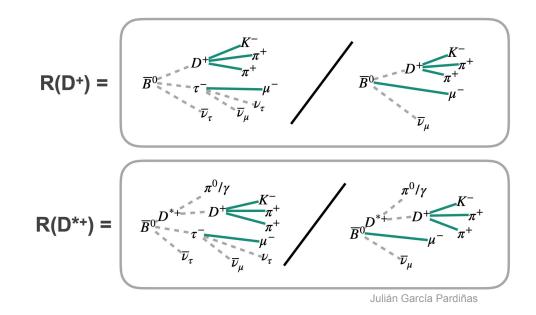
Henrik Junkerkalefeld

$R(X_{\tau/\ell})$ results

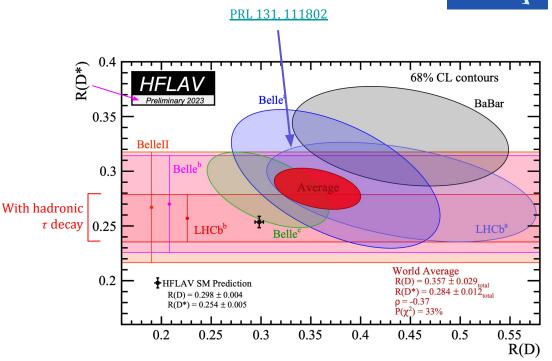

From 2D fit to lepton momentum and M_{miss}^{2}

Constraints **inferred** on R(D(*)) are weak, *but*:

- Statistics dominant, with <0.4% of the target Belle II dataset
- **Independent** of $R(D^*)$ measurement: $\sim 0.4\%$ statistical overlap, different theory descriptions, different observable


Take-home: Belle II has developed a powerful and independent new test of the $b \rightarrow c \tau \nu$ anomalies driven by **new inclusive techniques**

LHCb: New $R(D^+)$ and $R(D^{*+})$


LHCb: $R(D^+)$ and $R(D^{*+})$

LHCb: New $R(D^+)$ and $R(D^{*+})$

Context: **2023 result** from LHCb for $R(D^0)$ and $R(D^{*0,+})$

- Run 1 (3.0 fb $^{-1}$)
- First simultaneous measurement of $R(D^*)$ and $R(D^0)$ at a hadron collider
- Muonic tau decay (high BF, high backgrounds)

Complementary measurement with charged *D*⁺ now needed...

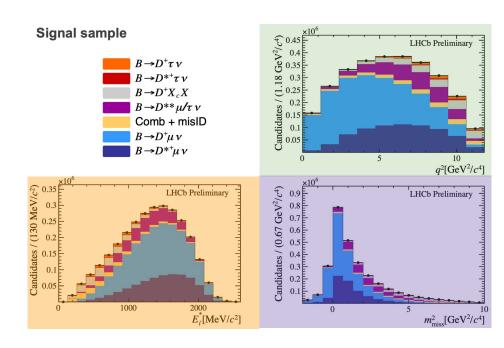
LHCb: New $R(D^+)$ and $R(D^{*+})$

Main goal: measure isospin-related $R(D^+)$ to complement $R(D^0)$

Simultaneous measurement shares visible final state: $[D^+ \rightarrow K^- \pi^+ \pi^+] + \mu^-$

Signal identification:

- Subtract fake D backgrounds in $M(K^-\pi^+\pi^+)$ using sPlot technique
- Track isolation criteria to define signal and control regions


$$\mathbf{R}(\mathbf{D^{*+}}) = \begin{bmatrix} \pi^{0}/\gamma & \pi^{0$$

Signal extraction

3D binned fit:

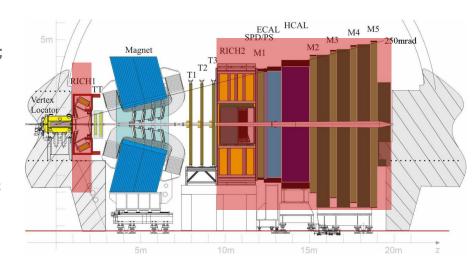
- Variables: m_{miss}^2 , E_l^* , q^2
- Components:
 - Signal (*D* and *D**)
 - Normalization (*D* and *D**)
 - Feed-down from $\mathbf{1P} D^{**}$ states
 - Muon mis-ID
 - (other charm, neutronic, combinatorial background)
- Simultaneous fit to *four data samples:*
 - \circ Signal sample $(D^+\mu^-)$
 - \circ 1p sample $(D^+\mu^-\pi^-)$
 - \circ 2p sample $(D^+\mu^-\pi^+\pi^-)$
 - \circ 1K sample($D^+\mu^-K^{\pm}$)

Two new methods

Form Factor variations: **HAMMER**

- Efficient reweighting of MC for FF variations and NP scenarios
- Developed by Belle II collaborators with theorists;
 first use in this analysis

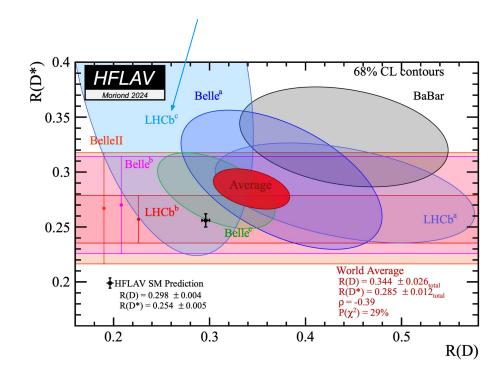
Tracker-only ultra-fast simulation


- "Turn off" all but tracker in simulation → faster simulations → reduced uncertainty from MC stats
- Effects of missing detectors emulated in analysis
- Multi-dimensional reweightings and QED corrections
- Excellent agreement achieved

Das ist der HAMMER: Consistent new physics interpretations of semileptonic decays

Florian U. Bernlochner^{a,1}, Stephan Duell^{b,1}, Zoltan Ligeti^{c,2}, Michele Papucci^{d,2,3}, Dean J. Robinson^{e,2}

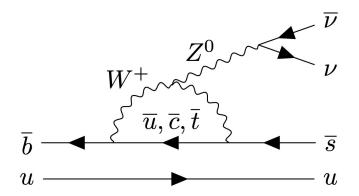
¹Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany ²Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA ³Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA

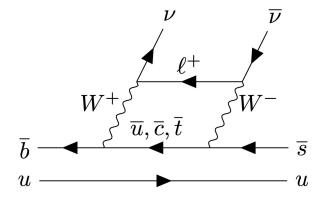


Results

Summary

- Compatible with SM at 0.78σ
- Compatible with previous world average at 1.09σ
- Uncertainties from stats and systematics approximately equal
 - Dominant systematics remain FFs and BFs


Recent results: FCNCs



Belle II: $B^+ \rightarrow K^+ \nu \nu$

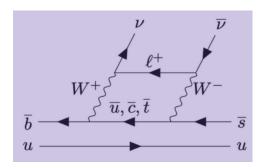
Evidence for $B^+ \to K^+ \nu \bar{\nu}$ Decays

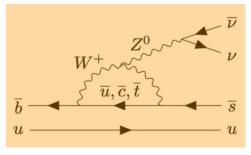
(Accepted by PRD, Feb 2024)

Belle II: $B^+ \to K^+ \nu \nu$

Suppressed in SM (10^{-6}) , only accessible via **box** or **penguin**

Could be enhanced by same NP as $R(D^{(*)})$, $b \rightarrow s \ell^+ \ell^-$, $(g-2)_{\mu}$...

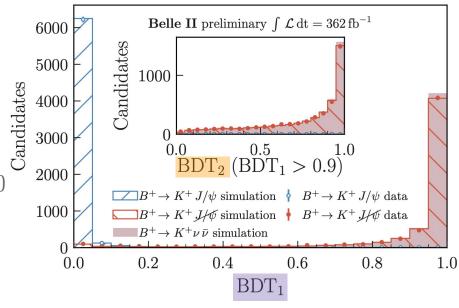

Very challenging:


- Two missing neutrinos, only one final state particle
- $K_{\rm L}^{0}$ backgrounds key but poorly constrained

Two approaches run in parallel:

- *Inclusive tag (ITA)*: no tag. High efficiency, high backgrounds.
- *Hadronic tag (HTA)*: strict reconstruction of tag *B*. Low efficiency, low backgrounds.

This is something only Belle II can do...


$B^+ \to K^+ \nu \nu$ analysis

Basic selections

- Energy and number of tracks consistent with $B\overline{B}$
- Missing momentum in detector acceptance

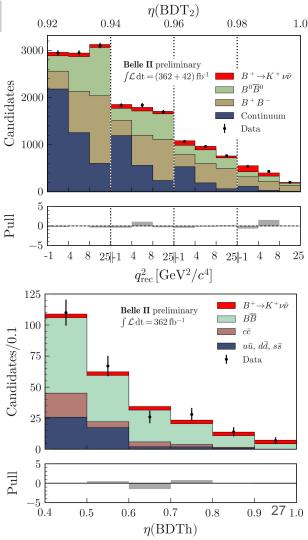
Background suppression

- ITA: Two consecutive Boosted Decision Trees (BDTs)
 - BDT₁: basic filter; kinematics, event shape
 - o **BDT**₂: trained on events with BDT₁>0.9
 - Validated with **embedding procedure** using $B^+ \rightarrow K^+ I/\psi$:
 - "Delete" muons from J/ψ decay
 - Replace K^+ with simulated signal K^+
- HTA: Single BDT (BDTh)

$B^+ \to K^+ \nu \nu$ signal extraction

Strategy and variables

- η : a signal classifier remapped so that signal is **flat**
- q^2_{rec} : inferred neutrino mass squared
- Systematic uncertainties included as nuisance parameters


ITA:

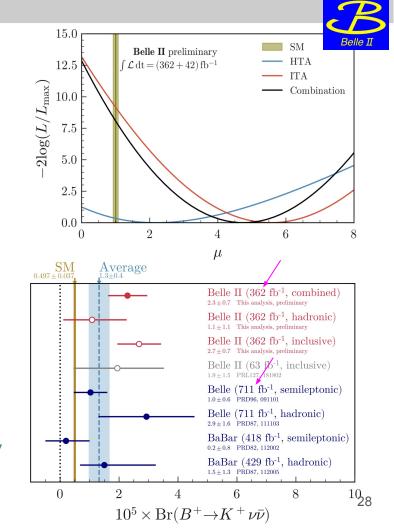
- Simultaneous on-/off-resonance fit
- $(4 \text{ bins in } \eta) \times (3 \text{ bins in } q^2_{\text{rec}})$

HTA:

• Fit to six bins of signal classifier $\eta(BDTh)$

A large number of controls/validations I have to skip...

$B^+ \to K^+ \nu \nu$: results

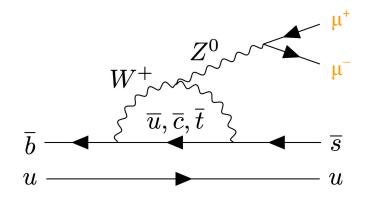

Combined ITA and HTA:

- Signal strength ($\mu_{\text{SM, short-range}} \equiv 1$): $\mu = 4.6 \pm 1.0 (\text{stat}) \pm 0.9 (\text{syst}) = 4.6 \pm 1.3$
- Branching fraction:

$$[2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5} = (2.3 \pm 0.7) \times 10^{-5}$$

ITA and HTA results are **compatible**, **independent**, and both approximately equally limited by stats and systematics

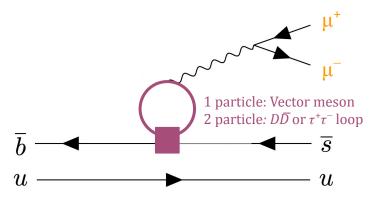
Take-home: first evidence for K^+vv (3.5 σ), BF in excess of SM by 2.7 σ ; enabled by **new inclusive techniques**



LHCb: $B^0 o K^{*0} \mu^+ \mu^-$

LHCb: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb-PAPER-2024-011

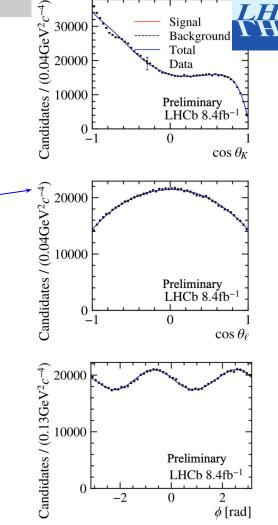



LHCb:
$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

Context:

- Longstanding **tensions** in angular analyses of $b \rightarrow s\mu^+\mu^-$
- Tensions in p_5 ' can be related to tensions in the C_9 Wilson Coefficient in EFT

But is this NP or **non-local QCD**?

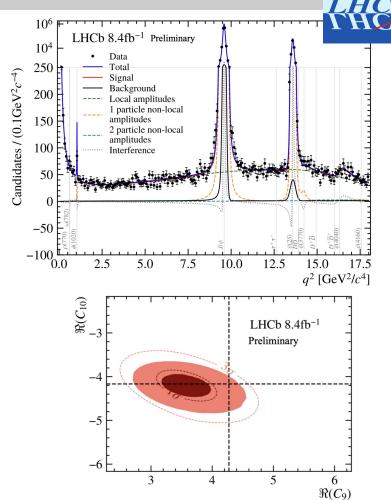

Analysis concept

Signal description:

• Signal amplitudes parameterized with *local* (Wilson Coefficients) and *non-local* contributions using a dispersion relation

Fit:

- 4D unbinned fit (three helicity angles + q^2)
- Determines **150 parameters**:
 - Wilson coefficients
 - Magnitude and phase on 1-particle contributions
 - 2-particle contribution
 - Form factors
 - 0


Belle II: $\eta' K_s^0$

Results

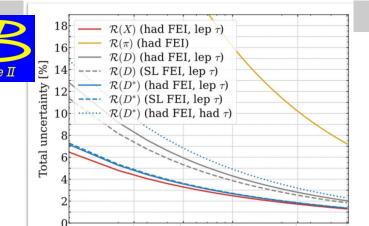
Wilson coefficients from fit:

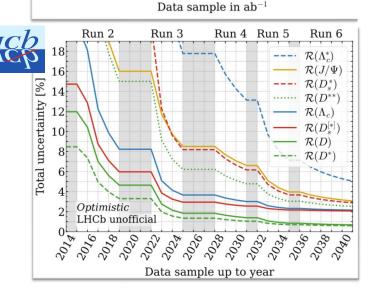
- Global tension with SM at **1.5s**
- Mostly driven by **2.1** σ tension in C_9 (again)
- The data prefer more non-local contributions than in formal SM calculations
 - (but not enough to explain the tension)

Take-home: A tension in C_9 persists, and it **isn't** due to long-range QCD

Conclusions

Progress in LUV and $b \rightarrow c\tau v$ anomalies:


- All-new inclusive R(X) at Belle II
- First $R(D^+)$ at LHCb
- Plus more, not featured today!
- Tension remains at $\sim 3\sigma$


Progress in FCNCs:

- Intriguing hints of NP in Belle II-only $B \rightarrow Kvv$
- Tension in angular analysis of $b \rightarrow s\ell\ell$ persists and isn't explainable by long-range QCD

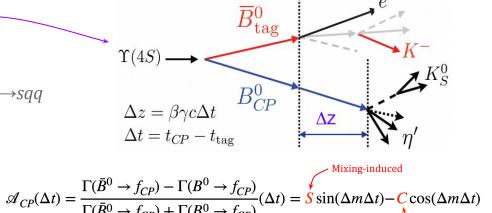
This is a **tiny** fraction of what Belle II and LHCb are up to, not to mention ATLAS and CMS B-physics programs

Look for an **explosion** of new results in the **next several years**!

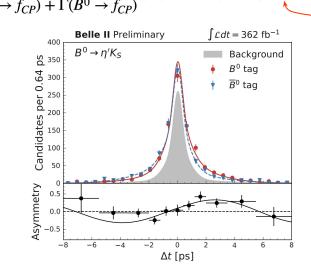


Thank you!

Belle II: Time-dependent *CP* violation


Measurement of $C\!P$ asymmetries in $B^0 \to \eta' K^0_s$ decays at Belle II

Belle II: $B^0 \rightarrow \eta' K_s^0$


Time-Dependent CP Violation in a **gluonic penguin** $b \rightarrow sqq$ (where q is u, d, or s):

- Dominated by loop amplitudes; sensitive to NP sources of CPV
- $B^0 \rightarrow \eta' K_s^0$: large BF, limited tree amplitudes

$$C_{\eta'K_S^0} = -0.19 \pm 0.08 \pm 0.03,$$
 Consistent with SM (0) and world average (-0.05 \pm 0.04)
$$S_{\eta'K_S^0} = +0.67 \pm 0.10 \pm 0.04,$$
 Consistent with world average (0.63 \pm 0.06)

Take-home: "best" gluonic penguin competitive with Belle/BaBar despite smaller sample; **statistically limited**

Direct