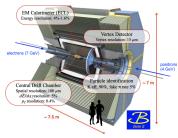
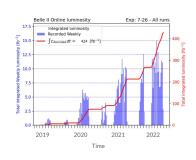
Tau and Low Multiplicity at Belle and Belle II

Philipp Horak¹ on behalf of the Belle II collaboration

¹HEPHY Vienna

58th Rencontres de Moriond QCD & High Energy Interactions

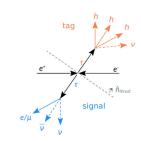

March 21, 2024

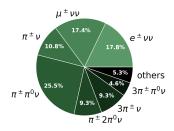


Belle II

- B factories offer clean environment to study τ and low-multiplicity physics
 - Well defined initial state
 - ▶ No pile up
 - Hermetic detectors allows precise determination of missing energy & momentum
- Belle II operates since 2018:
 - Excellent particle identification
 - ▶ High efficiency neutral reconstruction
 - Dedicated low multiplicity triggers
- Finished run1 data-taking in 2023:
 - ▶ 424 fb⁻¹ on tape
 - ▶ **362** fb⁻¹ @ $\Upsilon(4S)$

[Belle II TDR: arXiv:1011.0352]




au physics at Belle II

- $\sigma(ee \rightarrow bb) \simeq 1.1 \text{ nb}$
- $\sigma(ee \to \tau\tau) \simeq 0.9 \text{ nb}$
 - \hookrightarrow Belle II is not just B factory, but also τ factory!
 - $ightharpoonup \sim 4 \cdot 10^8 \ au$ pairs recorded in run1 data
- au au events are characterized by low track multiplicities and large missing energies
- Identify τ events by reconstructing thrust axis
 - Separate into hemispheres

$$V_{\rm thrust} \stackrel{\rm max}{=} \frac{\sum_i |\vec{p_i}^{\rm CM} \cdot \hat{n}_{\rm thrust}|}{\sum_i |\vec{p_i}^{\rm CM}|}$$

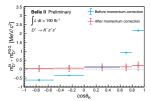
- Use one side to tag by reconstructing 1-prong or 3-prong decays
- Reconstruct signal on other hemisphere

au mass measurement

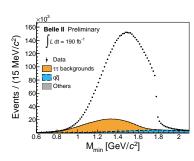
[Phys. Rev. D 108, 032006]

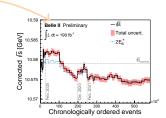
- Precise determination of m_{τ} with $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ in $\mathcal{L} = 190 \text{ fb}^{-1}$

 - Fundamental parameter, important input e.g. for LFU tests
- Pseudomass method:

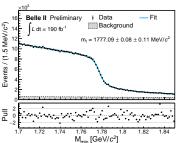

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

Challenge:


- High accuracy in p and \sqrt{s}
- p: calibrate track momentum correction with


$$D^0 \to K^-\pi^+$$

 \sqrt{s} : calibrate using B decays

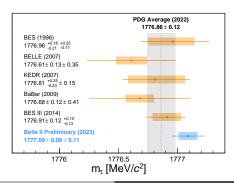

$$D^0 \to K^-\pi^+\pi^+$$
 validation

au mass measurement

[Phys. Rev. D 108, 032006]

1.7 1.72 1.74 1.76 1.78 1 M _{min} [GeV/ <i>c</i> ²]	.8 1.82
Source	Uncertainty $[\text{MeV}/c^2]$
Knowledge of the colliding beams:	
Beam-energy correction	0.07
Boost vector	< 0.01
Reconstruction of charged particles:	
Charged-particle momentum correction	0.06
Detector misalignment	0.03
Fit model:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	< 0.01
Imperfections of the simulation:	
Detector material density	0.03
Modeling of ISR, FSR and τ decay	0.02
Neutral particle reconstruction efficiency	≤ 0.01

< 0.01


< 0.01

< 0.01

< 0.01

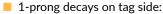
0.11

- Measure $m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \text{MeV/c}^2$
- World's most precise measurement!

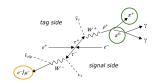
Momentum resolution

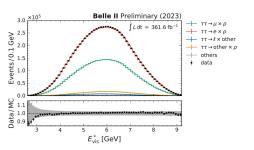
Background processes

Trigger efficiency


Total

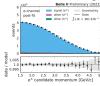
Tracking efficiency correction


Lepton flavor universality in τ decays


Measurement of lepton flavor universality:

$$R_{\mu} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})} \stackrel{SM}{=} 0.9726$$

- ightharpoonup Require one charged hadron and at least one π^0
- Large branching ratio, low backgrounds, high trigger efficiency



- Suppress backgrounds using BDT
- Combined $e-\mu$ sample: 94% purity at 9.6% signal efficiency
- Main backgrounds:
 - $\sim 3.3\%~e^+e^- \rightarrow \tau^+\tau^-$ with π^\pm faking lepton
 - $\, \triangleright \, \sim 2.3\% \; e^+e^- \to \tau^+\tau^-$ with wrongly reconstructed tagside
 - $0.2\% e^+e^- \rightarrow e^+e^-\tau^+\tau^-$

Lepton flavor universality in au decays

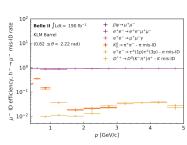
Extract signal yields with binned maximum likelihood fit in p_{ℓ} using pyhf

- Challenge in this analysis: careful treatment of leading particle identification (PID) systematic
 - Restrict to region least impacted by PID unceratinties:

$$0.82 < \theta_{\ell} < 2.13$$

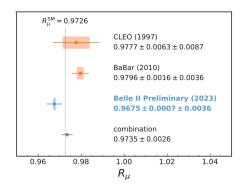
•
$$1.5 < p_{\ell} < 5.0 \text{ GeV}$$

- Obtain correction factors and uncertainties from correlation factors
- PID Efficiency:


o
$$J/\psi \to \ell^+\ell^-, e^+e^- \to e^+e^-\ell^+\ell^-$$
, and $e^+e^- \to \ell^+\ell^-(\gamma)$

- o e efficiency 99.7 %, μ efficiency 93.9%
- PID fake rates:

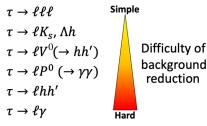
$$\circ K_S^0 \to \pi^+\pi^-$$
 and $au \to \pi\pi\pi\nu$


•
$$\pi$$
 faking e : 0.9 %, π faking μ 3.1%

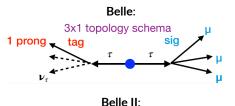
 Implement PID uncertainty as nuisance parameter on fit templates

Lepton flavor universality in τ decays

- Measure $R_{\mu} = 0.9675 \pm 0.0007 \pm 0.0036$
- World's most precise measurement of $\mu-e$ universality in $\tau!$
- Consistent with SM expectation within 1.4σ

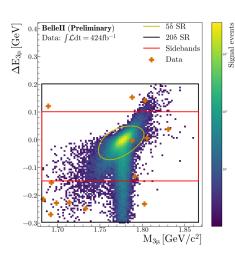


Source	Uncertainty [%
Charged-particle identification:	
Electron identification	0.23
Muon misidentification	0.19
Electron misidentification	0.1
Muon identification	0.0
Trigger	0.1
Imperfections of the simulation:	
Modelling of FSR	0.0
Normalisation of individual processes	0.0
Modelling of the momentum distribution	0.0
Tag side modelling	0.0
π^0 efficiency	0.0
Modelling of ISR	0.0
Photon efficiency	< 0.0
Photon energy	< 0.0
Size of the samples	
Simulated samples	0.0
Luminosity	0.0
Charged-particle reconstruction:	
Particle decay-in-flight	0.0
Tracking efficiency	0.0
Detector misalignment	< 0.0
Momentum correction	< 0.0
Total	0.3


■ PID makes up 0.32% of total 0.37% systematic uncertainty

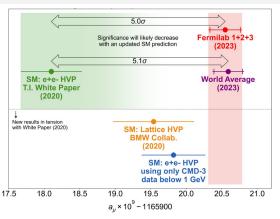

Search for τ to three muons

o lepton flavour violation decay modes:



- \hookrightarrow Golden channel: $au \to \mu\mu\mu$
 - Experimentally the most accessible
 - Branching ration in ν mixing SM: $10^{-53} \sim 10^{-56}$
 - ▶ Enhanced in new physics models
- Inclusive 1prong + 3prong tag at Belle II
- Signal efficiency $\varepsilon_{sig} = 20.42 \pm 0.06\%$
 - $\sim 300\%$ increase over Belle!

Search for τ to three muons


- Large background subtraction using $\Delta E_{3\mu} = E_{\tau,sig} E_{beam}$ and $M_{3\mu}$
 - Observed 1 event in the signal region

 Expected $0.5^{+1.4}_{-0.5}$ background events

UL@90%CL :
$$\mathcal{B}(\tau \to \mu \mu \mu) < 1.9 \times 10^{-8}$$

More stringent limit than Belle with $\sim 50\%$ of data sample!

(q-2) of the muon

Tension between theoretical prediction of the muon magnetic anomaly

$$a_{\mu} = \frac{(g-2)_{\mu}}{2} = a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}}$$

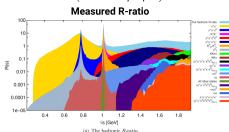
- Tension reduces to $\sim 1\sigma$ with newly included data:
 - $ightharpoonup a_{\mu}^{\mathrm{HVP,LO}}$ from lattice QCD
 - $\blacktriangleright \ \pi$ form-factor from CMD-3 in $a_{\mu}^{\rm HVP,LO}$

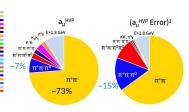
(q-2) of the muon

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{EW} + a_{\mu}^{QED} + a_{\mu}^{QCD}$$

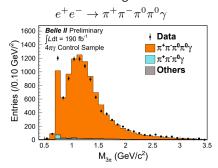
Hadron-contribution

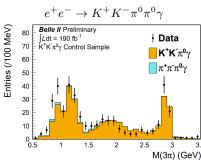
$$a_{\mu}^{QCD} = a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$


Leading order HVP-term

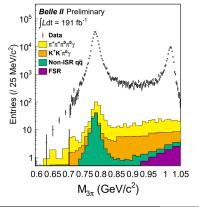

$$a_{\mu}^{HVP,LO} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{ds}{s} R(s) K(s)$$

HVP = hadron vacuum polarization; 82% of a_{μ}^{QCD} , HLBL = light-by-light;


- Belle II can provide $e^+e^- \rightarrow \text{hadrons}$ cross sections to improve predictions
 - Largest contribution $e^+e^- \to \pi^+\pi^-$ analysis currently ongoing
 - Second largest contribution $e^+e^- \to \pi^+\pi^-\pi^0$ presented today


$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Reconstruct $e^+e^- \to \pi^+\pi^-\pi^0$ decays in $\mathcal{L}=190~\mathrm{fb}^{-1}$
- Measure at different \sqrt{s} by using ISR technique
 - Reconstruct ISR photon
 - ▶ Pion invariant mass range from 0.62 to 3.5 GeV
- Effectively suppress background by using kinematic fit:
 - Constrain sum of $\pi^+\pi^-\pi^0\gamma_{ISR}$ momenta to e^+e^- beam momentum
- Validate main backgrounds in control samples:



$$\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$$

- Major analysis challenge is handling π^0 efficiency
 - \triangleright Evaluate efficiency using partial reconstruction of ω resonance decays:

$$\varepsilon_{\pi^0} = \frac{N(\text{Full reconstruction of } \gamma_{ISR} \, \pi^+ \pi^- \pi^0)}{N(\text{Partial reconstruction of } \gamma_{ISR} \, \pi^+ \pi^-)}$$

- ▶ Determines π^0 efficiency up to 1% → systematic uncertainty
- Fit $M_{\gamma\gamma}$ in each bin of $M_{3\pi}$:

Integrate over 3π cross section from 0.62 to 1.8 GeV:

$$a_{\mu,0.62\text{-}1.8}^{3\pi} \times 10^{10} = 49.02 \pm 0.23 \text{(stat.)} \pm 1.07 \text{(syst.)}$$

- 6.7% higher than global fit with 2.6σ significance
- → Slightly smaller anomaly
- \blacksquare Leading systematics π^0 efficiency and generator

Summary

Results

$$m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \text{MeV/c}^2$$

 $R_{\mu} = 0.9675 \pm 0.0007 \pm 0.0036$
 $\mathcal{B}(\tau \to \mu\mu\mu) < 1.9 \times 10^{-8} (90\% \text{CL})$
 $a_{\mu,0.62-1.8}^{3\pi} \times 10^{10} = 49.02 \pm 0.23 (\text{stat.}) \pm 1.07 (\text{syst.})$

- lacksquare Belle II is providing leading precision in au and low multiplicity measurements
 - ightharpoonup Precision measurements of au properties
 - Studies of standard model parameters
 - Searches for beyond SM physics
- Improvements on multiple frontiers
 - ▶ Results with 362fb⁻¹ of run1 data
 - Improved analysis techniques and reduced systematics

Run 2 started on February 20, 2024!

Backup