Tau and Low Multiplicity at Belle and Belle II

Philipp Horak¹ on behalf of the Belle II collaboration

¹HEPHY Vienna

58th Rencontres de Moriond QCD & High Energy Interactions

March 24, 2024

Belle II

- B factories offer clean environment to study τ and low-multiplicity physics
 - Well defined initial state conditions
 - Hermetic detectors allow determination of missing energy & momentum
- Belle II operates since 2018:
 - Excellent particle identification
 - High efficiency neutral reconstruction
 - Inclusive trigger scheme with dedicated low multiplicity triggers
- Finished run1 data-taking in 2023:
 - ▶ 424 fb⁻¹ on tape
 - ▶ 362 fb⁻¹ @ 𝔅(4S)

[Belle II TDR: arXiv:1011.0352]

 ${\color{black} \blacksquare \ \sigma(ee \rightarrow bb) \simeq 1.1 \ \text{nb}}$

- \hookrightarrow Belle II is not just *B* factory, but also au factory!
- $\blacktriangleright\ \sim 4\cdot 10^8\ \tau$ pairs recorded in run1 data
- au au events are characterized by low track multiplicities and large missing energies
- Identify au events by reconstructing thrust axis
 - Separate into hemispheres

$$V_{\mathrm{thrust}} \stackrel{\mathrm{max}}{=} \frac{\sum_{i} |\vec{p}_{i}^{\mathrm{CM}} \cdot \hat{n}_{\mathrm{thrust}}|}{\sum_{i} |\vec{p}_{i}^{\mathrm{CM}}|}$$

- Use one side to tag by reconstructing decays with 1 charged track (1-prong) or 3 charged tracks (3-prong)
- Reconstruct signal on other hemisphere

Lepton flavor universality in au decays

Measurement of coupling of light leptons to EW gauge bosons:

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})}} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \stackrel{SM}{=} 1$$

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \overline{\nu}_e \nu_{\tau})} \stackrel{SM}{=} 0.9726$$

- 1-prong decays on tag side:
 - \blacktriangleright Require one charged hadron and at least one π^0
 - Large branching ratio, low backgrounds, high trigger efficiency

- Suppress backgrounds using NN
- Combined e μ sample: 94% purity at 9.6% signal efficiency
- Main backgrounds:
 - ► $\sim 3.3\% e^+e^- \rightarrow \tau^+\tau^-$ with π^\pm faking lepton
 - ▶ $\sim 2.3\% e^+e^- \rightarrow \tau^+\tau^-$ with wrongly reconstructed tagside

Lepton flavor universality in τ decays

Extract signal yields with binned maximum likelihood fit in p_ℓ using pyhf¹

Challenge: careful treatment of leading particle identification (PID) systematic

Restrict to region least impacted by PID unceratinties:

• $0.82 < \theta_{\ell} < 2.13$

• $1.5 < p_{\ell} < 5.0 \, \text{GeV}$

Obtain correction factors and uncertainties from calibration samples

- e efficiency 99.7 %, μ efficiency 93.9%
- π faking e: 0.9 %, π faking μ 3.1%
- ightarrow Implement systematic uncertainty as nuisance parameter on fit templates

	Leaung systematics
Charged lepton identification	0.32%
Trigger efficiency	0.10%

0.37 % total relative systematic uncertainty

¹Documentation

Philipp Horak (HEPHY Vienna)

Lepton flavor universality in τ decays

 $R_{\mu} = 0.9675 \pm 0.0007_{\text{stat.}} \pm 0.0036_{\text{syst.}}$

- Converted to couplings $\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = 0.9974 \pm 0.0019$
- World's most precise measurement of μe universality in τ !

Consistent with SM expectation within 1.4σ

Difficulty of background reduction

 τ lepton flavour violation decay modes: Experimentally most accessible: $\tau \to \mu \mu \mu$

- No expected SM backgrounds
- Branching ratio in ν mixing SM: $10^{-53} \sim 10^{-56}$
- Enhanced in new physics models:

	$\mathcal{B}(au^- o \ell^- \ell^+ \ell^-)$
SM + seesaw	10^{-10}
SUSY + Higgs	10^8
SUSY + SO(10)	10^{-10}
Non-universal Z'	10^8

Inclusive 1prong + 3prong tag at Belle II

Signal efficiency $\varepsilon_{sig} = 20.42 \pm 0.06\%$

- $\succ \sim 3 \times$ higher than Belle at $0.5^{+1.4}_{-0.5}$ expected background events
- More strigent expected limit with $\sim 50\%$ data sample

Search for τ to three muons

 Large background subtraction using ΔE_{3µ} = E_{τ,sig} − E_{beam} and M_{3µ}
 Observed 1 event in the signal region
 Expected 0.5^{+1.4}_{−0.5} background events

UL@90%CL : $\mathcal{B}(\tau \to \mu\mu\mu) < 1.9 \times 10^{-8}$

Most stringent limit up to date:

	UL at 90% CL on $B(\tau \to 3\mu)$
Belle	$2.1 \times 10^{-8} \ (\mathcal{L}_{int} = 782 \text{fb}^{-1})$
BaBar	$3.3 \times 10^{-8} \ (\mathcal{L}_{int} = 468 \text{fb}^{-1})$
CMS	$2.9 \times 10^{-8} \ (\mathcal{L}_{int} = 131 \text{fb}^{-1})$
LHCb	$4.6 \times 10^{-8} \ (\mathcal{L}_{int} = 2.0 \text{fb}^{-1})$
Belle II	$1.9 \times 10^{-8} \; (\mathcal{L}_{int} = 424 \text{fb}^{-1})$

mass measurement τ

- Precise determination of m_{τ} with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ in $\mathcal{L} = 190 \text{ fb}^{-1}$

 - Fundamental parameter, important input e.g. for LFU tests
- Pseudomass method:

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

Challenge:

High accuracy in p and \sqrt{s}

- 100 fb⁻

-0.8 -0.6 -0.4 -0.2

 $\rightarrow K^-\pi^+\pi^-$

p : calibrate track momentum correction with

efore momentum correctio

0.4 0.6 0.8

momentum correction

$$D^0_{-} \rightarrow K^- \pi^+$$

 \sqrt{s} : calibrate using B decays

 $D^0 \rightarrow K^- \pi^+ \pi^+$ validation

cos0

m^R_D - m^{PDG} [MeV/c²

0.5

-0.5

O(70 KeV)

10.575

10.57

500

Chronologically ordered events

au mass measurement

(g-2) of the muon

Tension between theoretical prediction of the muon magnetic anomaly

$$a_{\mu} = \frac{(g-2)_{\mu}}{2} = a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}}$$

Tension reduces to $\sim 1\sigma$ with newly included data:

- $\blacktriangleright a_{\mu}^{\rm HVP, LO}$ from lattice QCD
- π form-factor from CMD-3 in $a_{\mu}^{\rm HVP,LO}$

Philipp Horak (HEPHY Vienna)

$$\left(g-2
ight)$$
 of the muon

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{EW} + a_{\mu}^{QED} + a_{\mu}^{QCD}$$

Hadron-contribution

 $a_{\mu}^{QCD}=a_{\mu}^{HVP}+a_{\mu}^{HLbL}$

$$a_{\mu}^{HVP,LO} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{ds}{s} R(s) K(s)$$

HVP = hadron vacuum polarization; 82% of
$$a_{\mu}^{\rm QCD}$$

HLBL = light-by-light; 18%

Second largest contribution $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ presented today

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Philipp Horak (HEPHY Vienna)

March 24, 2024

12/15

$$\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$$

- Reconstruct $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ decays in $\mathcal{L} = 190 \text{ fb}^{-1}$
- Measure at different \sqrt{s} by using ISR technique
 - Reconstruct ISR photon
 - Pion invariant mass range from 0.62 to 3.5 GeV
- Effectively suppress background by using kinematic fit:
 - ▶ Constrain sum of $\pi^+\pi^-\pi^0\gamma_{ISR}$ momenta to e^+e^- beam momentum
- Validate main backgrounds in control samples:

March 24, 2024

$$\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$$

Major analysis challenge is handling π^0 efficiency

Evaluate efficiency using partial reconstruction of ω resonance decays:

 $\varepsilon_{\pi^0} = \frac{N(\text{Full reconstruction of } \gamma_{ISR} \pi^+ \pi^- \pi^0)}{N(\text{Partial reconstruction of } \gamma_{ISR} \pi^+ \pi^-)}$

▶ Determines π^0 efficiency up to 1% → systematic uncertainty

Fit $M_{\gamma\gamma}$ in each bin of $M_{3\pi}$:

Integrate over 3π cross section from 0.62 - 1.8 GeV (Preliminary):

 $a_{\mu,0.62-1.8}^{3\pi} \times 10^{10} = 49.02 \pm 0.23 (\text{stat.}) \pm 1.07 (\text{syst.})$

- 6.7% higher than global fit with 2.6σ significance
- \hookrightarrow Slightly smaller anomaly
 - Leading systematics π^0 efficiency and generator

Summary

Results

 $\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = 0.9974 \pm 0.0019$ $\mathcal{B}(\tau \to \mu\mu\mu) < 1.9 \times 10^{-8} (90\% \text{CL})$ $m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \text{MeV/c}^{2}$ $a_{\mu \ 0}^{3\pi} 6_{2-1.8} \times 10^{10} = 49.02 \pm 0.23 (\text{stat.}) \pm 1.07 (\text{syst.})$

Belle II is providing leading precision in τ and low multiplicity measurements

- Precision measurements of au properties
- Studies of standard model parameters
- Searches for beyond SM physics
- Improvements on multiple frontiers
 - Results with 362fb⁻¹ of run1 data
 - Improved analysis techniques and reduced systematics

Run 2 started on February 20, 2024!

Backup

Tau LFU

- Challenge in this analysis: careful treatment of leading particle identification (PID) systematic
 - Restrict to region least impacted by PID unceratinties:
 - $0.82 < \theta_{\ell} < 2.13$
 - $\circ~1.5 < p_\ell < 5.0 \; \mathrm{GeV}$
 - > Obtain correction factors and uncertainties from correlation factors
 - PID Efficiency:
 - $J/\psi \rightarrow \ell^+ \ell^-, e^+ e^- \rightarrow e^+ e^- \ell^+ \ell^-$, and $e^+ e^- \rightarrow \ell^+ \ell^-(\gamma)$
 - e efficiency 99.7 %, μ efficiency 93.9%
 - PID fake rates:

•
$$K_S^0 \to \pi^+ \pi^-$$
 and $\tau \to \pi \pi \pi \nu$

• π faking e: 0.9 %, π faking μ 3.1%

 \hookrightarrow Implement PID uncertainty as nuisance parameter on fit templates

$$10^{2}$$
Belle II $\int Ldt = 190 \text{ fb}^{-1}$

$$+ J/\psi \rightarrow \mu^{+}\mu^{-}$$

$$+ e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}$$

$$+ e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}$$

$$+ e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma$$

$$+ e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma$$

$$+ e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma$$

$$+ e^{+}e^{-} \rightarrow \tau^{\pm}(1p)\tau^{\mp}(3p) - \pi \text{ mis-ID}$$

$$+ D^{*+} \rightarrow D^{0}(K^{-}\pi^{+})\pi^{+} - K \text{ mis-ID}$$

Philipp Horak (HEPHY Vienna)

Tau	LFU
lau	

Source	Uncertainty [%]
Charged-particle identification:	
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Trigger	0.10
Imperfections of the simulation:	
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distribution	0.06
Tag side modelling	0.05
π^0 efficiency	0.02
Modelling of ISR	0.01

Philipp Horak (HEPHY Vienna

Tau and Low Multiplicity at Belle and Belle II

March 24, 2024