

$\mathbf{T} \rightarrow \mathbf{l}$ +hadrons decays at Belle II

Laura Zani*

On behalf of the Belle II collaboration

Topical workshop on LFV decays of the au

Orsay, 2024.04.12

*laura.zani@roma3.infn.it

Outline

- Motivation, experimental challenges
 - Search for $\tau \to {\boldsymbol{\ell}} V^{\scriptscriptstyle 0}$ at Belle
 - Search for $\tau \to \ell \phi$ at Belle II
 - [–] Search for $\tau \to \ell K^{0}{}_{S}$ at Belle + Belle II and baryon and lepton number violation in $\tau \to \Lambda(\overline{\Lambda})\pi$ at Belle II
- Conclusion

Why τ decays?

 τ pairs produced in the e⁺e⁻ collisions are a unique laboratory to **test the standard model (SM)** through **precision** measurements and **search** for **non-SM physics**!

- $\bullet \quad M_\tau = 1777.09 \ \text{MeV}/c^2$
 - \rightarrow heavy enough to decay into final states with hadrons
 - \rightarrow search for non-SM physics, possible enhancement due to mass-dependent couplings
- Lifetime: 290.17 fs
 - \rightarrow not a long-lived particle
 - \rightarrow missing energy due to neutrinos

The challenges

High precision measurements of the SM properties

 Control of systematic sources → excellent understanding of the experiment performance and background description necessary to improve results mainly systematically limited

< fractions of per mill level

World's **leading sensitivities** for direct searches

 Largest data sets → attain highest luminosity, collect (unique) data set suitable to study rare processes + new techniques to increase the signal efficiency while keeping background under control

e.g. LFV decays, $\tau \rightarrow \! \ell \Phi, \, \tau \rightarrow \! \mu \mu \mu, \, ...$

 $< 10^{-8}$ level

Working at Bactories

• Clean environment at asymmetric energy e^+e^- collider $+ \sim$ hermetic detector:

 \rightarrow at $\surd s$ = 10.58 GeV: $\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim$ 1 nb, B & T factory

- \rightarrow known initial state + efficient reconstruction of neutrals ($\pi^{_0}$, η), recoiling system and missing energy
- \rightarrow specific **low-multiplicity triggers** (previously not available at Belle)

- GOAL: 30 × KEKB peak luminosity, L= 6 · 10³⁵ cm⁻²s⁻¹ (nano-beam scheme technique^{*})
- Collect 50 x Belle \rightarrow 50 ab⁻¹
- Accumulated 424 fb⁻¹ (~ Babar, ~ half of Belle) and unique energy scan samples during run 1
- Resumed data taking in February 2024: run 2 started!

Tau topologies and signatures

- Tau pairs in $e^+e^-\!\!\!\!\to \tau^+\tau^-$ events produced back-to-back in CM system
- Possible to separate them in two opposite hemispheres defined by the plane perpendicular to the thrust axis n_T

Beyond SM searches

Lepton flavor violation

Charged Lepton Flavor Violation (LFV) via SM weak interaction charged currents and ٠ neutrino mixing $\langle O(10^{-50}) \rightarrow$ below any experiment sensitivity

 \rightarrow observation of LFV decays is *per se* a proof of non-SM physics!

• Hints of Lepton Flavor Universality (LFU) violation and deviation from SM predictions in rare B decays (*flavor anomalies*):

 $-b \rightarrow c \mathcal{N}$ (**T** Vs light leptons), $b \rightarrow s l l$

New interaction that violates flavor (Z' boson, leptoquark)

 \rightarrow Special role of the third family

 $\tau \rightarrow l V^0$ via leptoquark interaction

Simplified U_1 model (with $\beta_{P}^{b\tau} = 0$)

IJCLab, Orsay - 2024/04/12

L.Zani for Topical workshop on LFV decays of the tau

LFV sensitivities

• Belle II expected to provide world's leading limits on many channels

IJCLab, Orsay - 2024/04/12

L.Zani for Topical workshop on LFV decays of the tau

Search for $\tau \rightarrow \ell V^0$ at Belle:

strategy

Full Belle data set of 980 fb⁻¹ \rightarrow 905M tau pairs

• Signal side: reconstruct lepton and V⁰ ϵ [ρ , ϕ , ω , K^{*}] from invariant mass windows around M_{V0}

- Use particle identification (PID) variables, likelihood ratios to identify(veto) leptons and hadrons

- Tag side: reconstruct 1 or 3-prong decays
- Exploit kinematics of the signal as *neutrinoless* decays
 - $M_{\ensuremath{\text{IV0}}\xspace}$ expected to peak at known tau mass
 - $\Delta E_{IV0} = E^*_{sig} \sqrt{s/2}$ peaks at 0 \rightarrow up to initial/final state radiation (ISR, FSR) effects
- * Count in elliptical signal region (SR) in $\Delta E_{\text{IV0}}\,\text{and}\,\,M_{\text{IV0}}$ plane

Search for $\tau \rightarrow \ell V^0$ at Belle:

background suppression and yields extraction

L.Zani for Topical workshop on LFV decays of the tau

- Backgrounds mimic the presence of neutrinos in the tag side (detector inefficiencies), wrong PID in the signal side \rightarrow exploit topology and tag kinematics to reject low-multiplicity: $e^+e^- \rightarrow e^+e^-(\gamma)$, $e^+e^- \rightarrow \mu\mu(\gamma)$, $e^+e^- \rightarrow e^+e^- \parallel$
- Further suppress $\tau \to 3\pi \nu$ and ee $\to q \overline{q}$ with BDT
 - use missing momentum and V^{0} properties, and $event\ tag$ categorical variables
- Estimate expected background in SR from sideband interpolation
 - Model the shape from hadron enhanced data samples scaled to sideband
 - $^-$ Integrate over the elliptical SR area

\rightarrow Count number of observed events in data inside SR

• Dominant systematic uncertainties from tracking and PID (negligible impact compared to the **statistical** one)

JHEP06(2023)118

11

(b) $\tau \to \mu \phi$

Search for $\tau \rightarrow \ell V^0$ at Belle:

results

• No significant excess observed \rightarrow set ULs at 90% CL

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^\pm \to \mu^\pm \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^\pm \to e^\pm \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^\pm \to \mu^\pm \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9
$\tau^\pm \to e^\pm \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4
$\tau^\pm \to \mu^\pm K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^\pm \to e^\pm K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9
$\tau^{\pm} ightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \rightarrow e^{\pm} \overline{K}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7

Average 30% improvement from both increased statistics $(+124 \text{ fb}^{-1})$ and improved analysis (+9% efficiency)

IJCLab, Orsay - 2024/04/12

$\tau \to \ell \Phi$ at Belle II

untagged approach

the tag side (untagged inclusive reconstruction)

- Exploit signal and event features in **BDT classifiers** to suppress background

• First application for $\tau \to I \Phi$ search on 190 fb⁻¹

$\tau \rightarrow \ell \Phi$: strategy

- Signal candidate: two oppositely charged kaon candidates with invariant mass at M₀ and a lepton (electron or muon)
 - use of kaonID and muonID as likelihood ratios of different particle hypothesis; BDT-based electronID (uses ECL and CDC information)
- Define analysis and signal box regions in the the $(M_{\tau}, \Delta E_{\tau})$ plane, in units of fitted signal resolutions modeled on signal simulations.

IJCLab, Orsay - 2024/04/12

$\tau \to \ell \Phi$: background suppression

- Reject radiative dilepton (Bhabha) with pre-selections based on event geometry
- Exploit rest of event (ROE), missing momentum and event shape, signal side kinematics in a **BDT classfier** (XGBoost, overtraining checked with log loss function)
 - Most discriminating variables related to:
 - [–] Rest Of Event (ROE) \rightarrow combines all non-signal tracks and remaining ECL clusters
 - Missing momentum \rightarrow good accuracy from Belle II hermetic detector's configuration
 - **Topology** \rightarrow thrust, reduced Fox-Wolfram moment R2 and CLEO cones (w.r.t. thrust or beam axis)
 - Ranked transverse momenta of signal side tracks
 - Charged and neutral particles multiplicities.

$$\mathbf{R}_2 = \mathbf{H}_2 / \mathbf{H}_0, \ H_l = \sum_{i,j} \frac{|\mathbf{p}_i| \times |\mathbf{p}_j|}{s} P_l(\cos \phi_{ij})$$

i,j: final state particles. ϕ_{ij} : angle between them. P_l : Legendre polynomial of degree l.

CLEO cones

D. M. Asner et al., Search for Exclusive Charmless Hadronic B Decays, Phys. Rev. D 53 1039, https://arxiv.org/abs/hep-ex/9508004v1

• Final signal efficiencies: $\epsilon_{e\Phi} = 6.1$ %, $\epsilon_{\mu\Phi} = 6.5\% \rightarrow 16\%$ improvement wrt tagged approach

$\tau \to \ell \Phi$: data validation

- Remaining backgrounds due to **misidentification of hadrons**
 - [–] Electron channel: KKK, K $\pi\pi$, e $\pi\pi$, ee π
 - [–] Muon channel: KKK, KK π , K $\pi\pi$, $\pi\pi\pi$, $\mu\pi\pi$
- Assess systematic uncertainties from data-MC agreement in control samples
 - Largest contribution due to simulation mis-modeling of some selection variables, but negligible compare to statistical uncertainty

$\tau \to \ell \Phi$: yields extraction

- Poisson counting experiment approach in signal regions in $M^{}_{\tau}$ and

 $\Delta E^{}_{\tau}^{} = E^{*}_{_{sig}} - \surd s/2$ plane

 \rightarrow expected background $N_{\mbox{\tiny exp}}$ evaluated from data reduced sidebands with scaling from simulation

Muon mode: $\tau
ightarrow \mu \Phi$

Electron mode: $\tau \rightarrow e \Phi$

IJCLab, Orsay - 2024/04/12

L.Zani for Topical workshop on LFV decays of the tau

PubConf arXiv:2305.04759

$\tau \to \ell \Phi : \text{ results}$

- No significant excess in 190 fb⁻¹
- Set 90% CL upper limits on the BF with CL_s method:

od:
$$\mathcal{B}_{\mathrm{UL}}(\tau \to \ell \phi) = \frac{N_{\mathrm{obs}} - N_{\mathrm{exp}}}{L \times 2\sigma_{\tau\tau} \times \varepsilon_{\ell\phi}},$$

Search for $\tau \to \ell \mathsf{K}_{\mathsf{S}^0}$ at Belle and Belle II

• First analysis for LFV search on the combined data set Belle (980 fb⁻¹) + Belle II, run 1 (424 fb⁻¹)

Experiment	Luminosity [fb ⁻¹]	UL at 90% CL [×1 eKs ⁰	0^{-8}] (expected) μK_{S}^{0}	Ref.
BaBar	469	3.3	4.0	Phys. Rev. D, 79 (2009)
Belle	671	2.6	2.3	Physics Letters B, Vol. 692, 1, (2010)
Belle + Belle II	1404	< 2	< 2	This analysis! NOT UNBOXED YET

- Reconstruct signal in one-pong tag approach
- Use lepton ID to distinguish two channels and tag sides
- BDT-based selection to reject main background from $e^+e^- \to q \overline{q}$

$\tau \rightarrow \ell K_{S^0}$: signal region

- Define region for analysis optimization in $M_{_{IKs}}$ vs $\Delta E = E^*_{_{sig}} \sqrt{s/2}$ plane, blind signal region (SR) and use sidebands (RSB) for data validation
- Tag-type dependent pre-selections against radiative dilepton and four-lepton final states
- Exploit tag side, missing momentum and event shape properties + K_{s^0} properties from signal side to train a **BDT** against ee \rightarrow qq
 - ⁻ Find optimal hyper-parameters by maximizing FOM_{Punzi} = ε_{sig} / (a/2 + \sqrt{B}), a= 3, optimized in elliptical signal region for yield extraction
 - $^-$ Final efficiencies >10% for both channels

$\tau \to \ell K_{S^0}$: expected events and yield extraction

- Number of expected events N_{exp} after final selections extracted by a linear fit to 6 bins of M_{IKS} in the data reduced sideband (RSB)
 - $^-$ Take central value of the SR fitted bin and scale by the ratio of $A^{\rm SR}_{\rm ellipse}/A^{\rm SR}_{\rm rectangular}$
 - $^-$ Use 68% CL of the fit to assess uncertainty on $N_{\mbox{\tiny exp}}$
 - Use simulation to validate fit results, found unbiased

$$\mathcal{B}(\tau^{\pm} \to l^{\pm} K_S^0) = \frac{N_{obs}^2 - N_{exp}}{L \times 2\sigma_{\tau\tau} \times \varepsilon_{\ell \mathrm{K}_{\mathrm{s}}^0}}$$

- Still blinded analysis!
 - Count the number of event in SR ellipse after unboxing, $N_{\mbox{\tiny obs}}$
- Statistically limited; systematics uncertainties evaluated from data-MC agreement in sidebands and dedicated calibration samples
- Estimate expected upper limit at 90% CL including systematics uncertainties exploiting CLs method in a Poisson counting experiment model

	eK_S^0		μK_S^0	
	Belle	Belle II	Belle	Belle II
Lepton identification [%]	2.3	0.7	2.4	1.3
Tracking efficiency [%]	1.05	0.96	1.05	0.96
Trigger efficiency [%]	0.9	0.68	0.9	0.68
K_S^0 efficiency [%]	4.5	5.9	4.5	6.0
BDT efficiency [%]	0.3	1.6	3.7	8.1
Momentum scale [%]	-	0.3	-	0.2
Luminosity [%]	1.4	0.6	1.4	0.6
Tau-pair cross-section [%]	0.3	0.3	0.3	0.3

Search for $\tau^{-} \rightarrow \Lambda(\overline{\Lambda})\pi^{-}$

- Baryon number violation (BNV) required for explaining matter antimatter asymmetry
- Baryon and lepton numbers conserved in the SM, might be violated in beyond SM scenarios
- Previous search on 154 fb⁻¹ at Belle [1] set limits at 90% CL of 0.72 (1.4) × 10⁻⁷ for BR($\tau^- \rightarrow \Lambda(\overline{\Lambda})\pi^-$)

	$ au^- o \Lambda \pi^-$		$ au^- ightarrow \Lambda \pi^ au^- ightarrow \overline{\Lambda} \pi^-$		$\overline{\Lambda}\pi^{-}$	$ \widehat{A} = \begin{bmatrix} \widehat{A} & \widehat{A} \\ \widehat{A} & \widehat{A} \end{bmatrix} $ Belle: $\tau^- \rightarrow A \pi^- \begin{bmatrix} \widehat{A} & \widehat{A} \\ \widehat{A} & \widehat{A} \end{bmatrix} $ Belle: $\tau^- \rightarrow A \pi^- \begin{bmatrix} \widehat{A} & \widehat{A} \\ \widehat{A} & \widehat{A} \end{bmatrix} $
	initial state	final state	initial state	final state	$ = = \underbrace{ = \underbrace{ = \underbrace{ = \underbrace{ = \underbrace{ = \underbrace{ = \underbrace$	
В	0	1	0	-1	0	
L	1	0	1	0		
B-L	-1	1	-1	-1		
$ \Delta(\boldsymbol{B}-\boldsymbol{L}) $	2	2	()	-0.40.40.40.40.40.40.4	

- Reconstruct exactly 4 charged tracks (total null charge) in one-prong tag approach
- Apply loose pre-selections and MVA classifier to isolate signal
- Poisson counting experiment technique in elliptical signal regions SR in $M^{}_\tau$ and $\Delta E^{}_\tau = E^*_{_{sig}} \sqrt{s/2}$ plane

background suppression and expected sensitivity

- Particle hypothesis likelihood ratio (proton Vs pion, pion Vs kaon) for signal identification: confined around M_{Λ_i} with flight distance at least twice its uncertainty
 - Lepton identification to distinguish tag side on
- Reject $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \mu\mu$ -, $e^+e^- \rightarrow e^+e^-$ hh requiring missing momentum and tag side track separation, thrust >0.9 and limit photon multiplicities
- Use MVA with to reject $e^+e^-{\rightarrow}qq$ and $~e^+e^-{\rightarrow}~\tau^+~\tau^-$
- Final signal efficiencies of **9.52 (9.90)** % for $\tau \rightarrow \Lambda(\overline{\Lambda})\pi^-$ with **1 (0.5) expected** events in SR, evaluated from sidebands and rescaled according to simulation

$$\mathcal{B}(\tau^- \to \Lambda \pi^-) = \frac{N_{obs}^2 - N_{exp}}{2\epsilon_{sig} \mathcal{L} \sigma_{\tau\bar{\tau}} \mathcal{B}(\Lambda \to p\pi)}$$

e, μ, π

- Still blinded analysis!
 - Count the number of event in SR ellipse after unboxing, $N_{\mbox{\scriptsize obs}}$
- Compute upper limit in a Bayesian approach including systematic uncertainties: PID dominant contribution, negligible compared to statistical \rightarrow Expect world's leading limits $< 5 \times 10^{-8}$

Summary and outlook

- Study of LFV decays of tau with hadrons in final states is ongoing at Belle II
- Devised new strategies to boost signal efficiency keeping the background under control
 - [–] First proof of concept in $\tau \rightarrow \ell \Phi$, Pub.Conf. arxiv:2305.04759
 - Improving hadron ID performance, exploit MVA methods
- Increasing the available statistics by combining with Belle data set, first combined analysis for $\tau \to \ell K_{S^0}$
- Expect world's best limit on BNV and LNV decays $\tau\to\Lambda(\overline{\Lambda})\pi$

 \rightarrow Run 2 started, with more data possible to improve LFV channels

Thanks for your attention!

STAY TUNTEDIA

backup

New physics in neutrinoless tau decays

 $\tau \rightarrow \ell V^0$ ($\ell = e, \mu$; V⁰: neutral vector meson) LFV decays can be enhanced in many new physics (**NP**) models: MSSM, Type-III Seesaw, SO(10) GUT, SM + Heavy Dirac Neutrinos, Littlest Higgs Model with T-parity, Unparticles...

 $\tau \rightarrow \ell \phi$ (ϕ = ssbar meson of mass ~1020 MeV/c²) in particular is related to the U_1 vector leptoquark hypothesis. \rightarrow could explain both $R_{D(*)}$ and $R_{K(*)}$ anomalies.

Model	${\cal B}(au o e \phi)$	$\mathcal{B}(au o \mu \varphi)$
U ₁ leptoquark	< 10 ⁻⁸	10 ⁻¹⁰ - 5×10 ⁻⁸
$SO\!(10)~{\rm GUT}$	(1 – 5)×10 ⁻⁹	4×10 ⁻⁹ - 2×10 ⁻⁸
Littlest Higgs	(1 – 2)×10 ⁻⁸
Unparticles	6×10 ⁻¹¹ - 10 ⁻⁹	6×10 ⁻⁹ - 10 ⁻⁷

L.Zani for Topical workshop on LFV decays of the tau

$\tau \to \ell \Phi$: fitted signal resolutions

- Fit both variables with (a, b: parameters of the fit):
 - a*Crystal Ball + b*Core Gaussian
 + (1-a-b)*Broad Gaussian
- Total sigma: weighted sum of the three components' sigmas.

$\tau \to \ell \Phi$: data driven suppression

- Remaining contamination observed in data control regions for the electron mode
 - V⁰-photoproduction process $e^+e^- \rightarrow e^+e^-\phi \rightarrow not$ simulated
 - data driven veto applied to the electron channel requiring a single electron candidate in the event and constraining the event topology (2nd moment CLEO cone, angle between tau flight direction and reconstructed momentum)
- Final signal efficiencies: Electron = 6.1 %, Muon = 6.5%
- Dominant systematics due to simulation mismodeling, negligible compared to statistical uncertainty

Affected quantity	Source	Mode		
Affected quantity	Source	$e\phi$	$\mu\phi$	
	Particle identification	0.8%	0.3%	
_	Tracking efficiency	0.9%		
$arepsilon_{\ell\phi}$	Trigger efficiency	0.4%	0.9%	
	Signal variable mismodeling	15.2%	8.5%	
$N_{ m exp}$	Momentum scale	0.6%	0.4%	
L	Luminosity	0.6%		
$\sigma_{ au au}$	Tau-pair cross section	0.3%		

IJCLab, Orsay - 2024/04/12

L.Zani for Topical workshop on LFV decays of the tau

$\tau \rightarrow \ell K_{S^0}$: background suppression

- ^ Main background from $e^+e^{} \rightarrow qq$
 - Overall normalization for muon tag derived from $D \to K_s{}^0\pi \text{ control sample}$
- ⁻ Exploit tag kinematics, missing momentum and event shape properties $+ K_{s^0}$ properties from signal side to train a BDT (XGBoost library)
- Find optimal parameters tuning by maximizing FOM_{Punzi}= $\epsilon_{sig} / (a/2 + \sqrt{B})$, a= 3
 - Good separation achieved
- Optimize elliptical signal region for yield extraction
- $^-$ Final efficiencies >10% for both channels

$\tau \rightarrow \ell K_{S^0}$: sensitivity

- Estimate expected upper limit at 90% CL including **systematics** uncertainties exploiting **CLs method** in a Poisson counting experiment model
 - ⁻ Generate 5000 toys for 50 uniformly distributed points of BR in the range $(0 5) \times 10^{-8}$ for each data set (Belle and Belle II)

Also dark searches, chiral Belle...and other tests

- τ decays to **new LFV bosons**, possible ALP candidates [1]
- Search for $\tau \rightarrow l\alpha$ decays with l=e or μ looking for bumps in normalized lepton energy spectrum over irreducible background

M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020)
 arXiv: 2205.12847 , [3] PRD 108 (2023) 092001

IJCLab, Orsay - 2024/04/12

- Possbile SuperKEKB upgrade with polarized electron beam
 [2] → precision electroweak physics and non-SM searches!
 - ⁻ Use tau polarimetry for 0.5% precision (BaBar method [3])

$$P_{\tau} = P \frac{\cos\theta}{1 + \cos^2\theta} - \frac{8G_F s}{4\sqrt{2}\pi\alpha} g_V^{\tau} \left(g_A^{\tau} \frac{|\vec{p}|}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right).$$

 $^-$ Unprecedented precision on edm and MDM of the τ

• Test Bell Inequality violation (non-locality of quantum mechanics) with $e^+e^- \rightarrow \tau \tau$?

 \rightarrow Measure **T** spin orientation with polarimeter-vector method, arXiv:2311.17555 M. Fabbrichesi et al.

Invisible boson in LFV τ decays

- τ decays to **new LFV bosons** (ALPs) predicted in many models [1]
- Search for the process $e^+e^- \rightarrow \tau_{_{sig}} (\rightarrow \prime \alpha) \tau_{_{tag}} (\rightarrow 3\pi\nu)$, with l=e or l= μ

- Approximate \mathbf{T}_{sig} pseudo-rest frame as $E_{sig} \sim \sqrt{s/2}$ and $\hat{p}_{sig} \approx -\vec{p}_{\tau_{tag}}/|\vec{p}_{\tau_{tag}}|$
- Two-body decay: search a bump in normalized lepton energy x_1 spectrum over irreducible background from $\tau_{sM} \rightarrow I \nu \nu$
- No signal found in **62.8** fb⁻¹ \rightarrow set 95% CL upper limits on BF ratios of **BF**($\tau_{sig} \rightarrow l\alpha$) normalized to BF($\tau_{SM} \rightarrow l\nu\nu$)

Between 2-14 times more stringent than previous limits (ARGUS, 1995 [2])

M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020)
 ARGUS Collaboration, Z. Phys. C 68, 25 (1995)
 IJCLab, Orsay - 2024/04/12

L.Zani for Topical workshop on LFV decays of the tau

PRL 130 (20 23) 181803