

…

New developments on inclusive V_{cb}

florian.bernlochner@uni-bonn.deWilk member

IVERSITAT BONN

Many thanks to feedback from

Postaurant

Florian Bernlochner \parallel New Developments on inclusive V_{cb}

$Puzzles...$ \mathcal{D}^{max} don't happen at \mathcal{D}^{max} don't happen at \mathcal{D}^{max} don't happen at \mathcal{D}^{max}

 $\overline{}$ It may look cute, but that might be deceiving…

$Puzzles...$ \mathcal{D}^{max} don't happen at \mathcal{D}^{max} don't happen at \mathcal{D}^{max} don't happen at \mathcal{D}^{max}

 $\overline{}$ It may look cute, but that might be deceiving…

$Puzzles...$

 $\overline{}$ It may look cute, but that might be deceiving…

How to inclusive V_{cb}

Wilk members

Florian Bernlochner | New Developments on inclusive V_{cb}

Restaurant

mmmm

How to inclusive V_{cb}

How to inclusive V_{ch}

How to inclusive V_{ch}

Other complication: OPE does not allow point-by-point predictions

But converges if integrated over large parts of phase space

$$
v = p_B/m_B
$$

$$
\int w^n(v, p_\ell, p_\nu) \frac{d\Gamma}{d\Phi} d\Phi
$$

weight function

Example weight functions

$$
w = (p_e + p_v)^2 = q^2
$$

$$
w = (m_B v - q)^2 = M_X^2
$$

$$
w = (v \cdot p_e) = E_e^B
$$

four-momentum transfer squared

invariant mass squared

Lepton Energy

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$ n cases expansion in T

Let's take a moment or two... **Some that the Callet's** take $*$ ^{#10}

 Ω ut-off

 O

ut-off

→ highly correlated measurements Moments are measured with progressive cuts in the distribution

How to measure spectral moments

How to measure spectral moments

12

Measurement in a nutshell

Step #1: Subtract Background additional calibration factors *C*calib and *C*gen, discussed in components normalized to the results of the *M^X* fits.

 $T_{\rm eff}$ is reconstructed as \sim

Event-wise **Master-formula** order *n* is calculated as a weighted mean

$$
\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{\text{data}}} w(q_{\text{reco,i}}^2) \times q_{\text{calib},i}^{2n}}{\sum_{j}^{N_{\text{data}}} w(q_{\text{reco,j}}^2)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{gen}},
$$

ground components normalized to the results of the *M^X* fits

L

reco distribution is calibrated exploiting the linear

Measurement in a nutshell

 $q^2 > 2.5$ GeV²/c⁴ 12 Exploit linear dependence $q^2>3.0~{\rm GeV^2/c^4}$ $a^2 > 3.5$ GeV²/c⁴ $\begin{array}{ccc}\n\langle\sigma_{\text{reco}}^{2}\rangle\left[\text{GeV}^{2}/c^{4}\right]\n\end{array}$ between rec. & true moments $m = 1.04 \pm 0.00$ $c = 0.75 \pm 0.01$ GeV² $q_{\text{cal i}}^{2m} = (q_{\text{reco }i}^{2m} - c) / m$ 8

2

applying and Step #1: Subtract Background Step #2: Calibrate moment

 $T_{\rm eff}$ is reconstructed as \sim

additional calibration factors *C*calib and *C*gen, discussed in Γ first momentum as a function of the minimum as Γ

Event-wise Master-formula order *n* is calculated as a weighted mean

$$
\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{\text{data}}} w(q_{\text{reco,i}}^2) \times q_{\text{calib},i}^{2n}}{\sum_{j}^{N_{\text{data}}} w(q_{\text{reco,j}}^2)} \times C_{\text{calib}} \times C_{\text{gen}},
$$

14

 $q^2 > 6.5 \text{ GeV}^2/\text{C}^4$

Figs. 12 and 13 show the calibration factors *C*calib and *C*gen as functions of *q* using independent simulated samples of signal *B* ! *X^c* ` ⌫¯` decays. The corrections from *C*calib are small, typically below 2%, and correct deviations from the linear relationships between reconstructed and generated moments. The Measurement in a nutshell

(13)

ⁱ (*p*b*ⁱ ^pi*) *,* (10) with sums over a larger all events. For each reconstructed \mathbf{q} and \mathbf{q} reconstructed \mathbf{q} and \mathbf{q} a Step #3: If you fail, try again

Measurement in a nutshell

ⁱ (*p*b*ⁱ ^pi*) *,* (10) Step #3: If you fail, try again

with sums over a large sums over a large \sim **For each reconstructed in the sums of each reconstructed** \sim Step #4: Correct for selection effects

(13)

Measurement in a nutshell

where *^p*b*ⁱ* is the fitted four-momentum, and *^Cⁱ* is the covariance matrix of the four-momentum of $\overline{}$

state particle. *C*` is given by the track fit result, while

Example: Belle II q^2 spectral moments

Statistical plus **systematic** correlations

strong correlations!

From moments to *central moments III di III*UIII CIIIS

MUNIMITY

What's **new?**

Wilk members

Florian Bernlochner | New Developments on inclusive V_{cb}

Restaurant

 $|V_{cb}| = 42.16(30)_{th}(32)_{exp}(25)_{\Gamma}~10^{-3}$ and $\frac{m_b^{km}~\overline{m}_c(2{\rm GeV})}{4.573}$ and $\frac{\mu_{\pi}^2}{1.092}$ and $\frac{0.477}{0.185}$ and $\frac{0.306}{0.306}$ and $\frac{0.050}{0.002}$ and $\frac{0.008}{0.002}$ compute for the first time ↵³ corrections to *q* by spec- Δ | \mathbf{v}_{cb} | \mathbf{v}_{cb} | \mathbf{v}_{cb} | \mathbf{v}_{cb} results to \mathbf{v}_{cb} λ $\Delta |V_{cb}| / |V_{cb}| = 1.2\%$!

mand taking t
Manazarta akan dengan taking taki IVI. BOrdone, B. Capdevila, P. Garnoino
Let use on the second access and the moments and the use of Eq. (1). Fig. (1). Fig of 15%. *^s*) calculation [20, 33–36] without *^O*(↵*s*⇢³ [Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604] ا Phys.Lett.B
ا M. Bordone, B. Capdevila, P. Gambino

 $\mathcal{L} \cdot \mathcal{J} \perp 1.1$ \times 10 See also [Phys.Lett.B 829 (2022) 137068, 2202.01434] for very recent 1S fit finding $|V_{cb}| = (42.5 \pm 1.1) \times 10^{-3}$

$$
d\Gamma = d\Gamma_0 + d\Gamma_{\mu_\pi} \frac{\mu_\pi^2}{m_b^2} + d\Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + d\Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + d\Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots
$$

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] (M. Fael, T. Mannel, K. Vos)

→ Number of ME reduce by exploiting reparametrization **invariance**, but **not true for every observable**

Spectral moments :

$$
v = p_B/m_B
$$

$$
\langle M^n[w] \rangle = \int w^n(v, p_\ell, p_\nu) \frac{d\Gamma}{d\Phi} d\Phi
$$

 $w = (m_B v - q)^2 \Rightarrow \langle M_X^n \rangle$ Moments

- $w = v \cdot p_e \Rightarrow \langle E^n_e \rangle$ Moments
- $w = q^2 \Rightarrow \langle (q^2)^n \rangle$ Moments

not RPI (depends on *v*) not RPI (depends on *v*)

RPI! (does not depend on *v*)

$$
d\Gamma = d\Gamma_0 + d\Gamma_{\mu_\pi} \frac{\mu_\pi^2}{m_b^2} + d\Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + d\Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + d\Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots
$$

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] (M. Fael, T. Mannel, K. Vos)

→ Number of ME reduce by exploiting reparametrization **invariance**, but **not true for every observable**

 Meas urements of q^2 moments of inclusive $B\to X_c\ell\bar\nu_\ell$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Measurements of Lepton **Mass squared moments** in inclusive $B \to X_c \ell^2 \bar{\nu}_\ell$ Decays with the Belle II Experiment [PRD 107, 072002 (2023), arXiv:2205.06372]

 $|V_{cb}|$ from q^2

 0.6

 $|V_{cb}|$ from q^2 F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [arXiv:2205.10274] **R. Van Tonder, K. Vos, M. Welsch [arXiv:2205.10274]**

 $|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3} = (41.69 \pm 0.63) \cdot 10^{-3}$

which has an incredible \mathbb{R}^n percent-level precision. Our new value p

25

 $|V_{cb}|$ from q^2 versus E_e : M_x^2 *X* Eur. Phys. J. Spec. Top.

Moment party: $q^2 : E^B_{\ell} : M_X^2$

https://arxiv.org/abs/2310.20324

The q^2 moments in inclusive semileptonic B decays

G. Finauri^a P. Gambino a,b,c

munmu

Interesting **future** directions

Wilk members

Florian Bernlochner $\begin{bmatrix} 1 & N \end{bmatrix}$ New Developments on inclusive V_{cb}

Restauran

https://arxiv.org/abs/2312.05147

Inclusive semileptonic B_s^0 meson decays at the LHC via a sum-of-exclusive modes technique: possibilities and prospects

M. DE CIAN^a, N. FELIKS^{b,†}, M. ROTONDO^c AND K. KERI VOS^{d,e}

LQCD might enter the scene

https://arxiv.org/abs/2311.09892

QED will enter the scene

https://arxiv.org/abs/2309.02849

QED effects in inclusive semi-leptonic B decays

Dante Bigi, Marzia Bordone,^a Paolo Gambino, b,c,d Ulrich Haisch^c and Andrea Piccione^e

Discussion items

Wilk members

Florian Bernlochner | New Developments on inclusive V_{cb}

Restaurant

1111111111111111

Isospin and Lifetimes Placeholder