

Florian Bernlochner

. . .

New developments on inclusive V_{cb}

florian.bernlochner@uni-bonn.de

VERSITAT BONN

Many thanks to feedback from

estaurant

New Developments on inclusive V_{ch}

Puzzles...

It may look cute, but that might be deceiving...

Puzzles...

It may look cute, but that might be deceiving...

Puzzles...

It may look cute, but that might be deceiving...

significance (σ)

How to inclusive V_{cb}

Wilk mmen bait

Florian Bernlochner New Developments on inclusive V_{cb}

Restaurant

1111111111111

How to inclusive V_{cb}

How to inclusive V_{cb}

Other complication: OPE does not allow point-by-point predictions

But converges if integrated over large parts of phase space

$$v = p_B/m_B$$

$$\int w^n(v, p_\ell, p_\nu) \frac{d\Gamma}{d\Phi} d\Phi$$

weight function

Example weight functions

$$w = (p_{\ell} + p_{\nu})^{2} = q^{2}$$
$$w = (m_{B}\nu - q)^{2} = M_{X}^{2}$$
$$w = (\nu \cdot p_{\ell}) = E_{\ell}^{B}$$

four-momentum transfer squared invariant mass

squared

Lepton Energy

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$

Let's take a moment or two...

it-off

0

it-off

Moments are measured with progressive cuts in the distribution → highly correlated measurements

How to measure spectral moments

How to measure spectral moments

Step #1: Subtract Background

Event-wise Master-formula

$$\langle q^{2n}
angle = rac{\sum_{i}^{N_{\text{data}}} w(q_{\text{reco,i}}^2) imes q_{ ext{calib},i}^{2n}}{\sum_{j}^{N_{ ext{data}}} w(q_{ ext{reco,j}}^2)} imes \mathcal{C}_{ ext{calib}} imes \mathcal{C}_{ ext{gen}} \,,$$

13 q² > 4.5 GeV²/c⁴ $\nabla q^2 > 7.0 \, \text{GeV}^2/c^4$ q² > 1.5 GeV²/c⁴ $q^2 > 5.0 \text{ GeV}^2/c^4$ $a^2 > 7.5 \, \text{GeV}^2/c^4$ $q^2 > 2.0 \text{ GeV}^2/c^4$ \triangle q² > 5.5 GeV²/c⁴ $q^2 > 8.0 \, \text{GeV}^2/\text{c}^4$ $a^2 > 2.5 \text{ GeV}^2/c^4$ 12 Exploit linear dependence $a^2 > 8.5 \text{ GeV}^2/c$ $q^2 > 3.0 \; {\rm GeV^2/c^4}$ > 6.0 GeV²/c⁴ $a^2 > 3.5 \text{ GeV}^2/c^4$ (q²_{reco}) [GeV²/c⁴] 8 6 01 11 between rec. & true moments $m = 1.04 \pm 0.00$ $q_{\operatorname{cal} i}^{2m} = \left(q_{\operatorname{reco} i}^{2m} - c\right)/m$ $c = 0.75 \pm 0.01 \, \text{GeV}^2$ 8 Belle II (simulation) 6 8 6 7 9 10 5 $\langle q^2_{\rm gen,\,sel} \rangle \, [{\rm GeV^2/c^4}]$ Step #1: Subtract Background Step #2: Calibrate moment

Event-wise Master-formula

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{\text{data}}} w(q_{\text{reco,i}}^2) \times q_{\text{calib},i}^{2n}}{\sum_{j}^{N_{\text{data}}} w(q_{\text{reco,j}}^2)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{gen}} ,$$

★ $q^2 > 6.5 \text{ GeV}^2/c^4$

 $\nabla q^2 > 4.0 \text{ GeV}^2/c^4$

 $(q_{\text{reco}}^2) = m \cdot \langle q_{\text{gen, sel}}^2 \rangle + c$

Step #3: If you fail, try again

Step #3: If you fail, try again

Step #4: Correct for selection effects

Example: Belle II q^2 spectral moments

strong correlations!

From moments to central moments

What's new?

Wilk mmen bais

Florian Bernlochner New

Restaurant

New Developments on inclusive V_{cb}

M. Bordone, B. Capdevila, P. Gambino [Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604]

-0.420 1 0.735-0.054 $0.067 \quad 0.172$ 0.4291 -0.157 -0.149 0.0910.2990.001 0.013 -0.2251 1 -0.033 -0.0051 0.684

See also [Phys.Lett.B 829 (2022) 137068, 2202.01434] for very recent 1S fit finding $|V_{cb}| = (42.5 \pm 1.1) \times 10^{-3}$

1

$$d\Gamma = d\Gamma_{0} + d\Gamma_{\mu\pi} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + d\Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}} + d\Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}} + d\Gamma_{\rho_{LS}} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots$$

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] (M. Fael, T. Mannel, K. Vos)

→ Number of ME reduce by exploiting reparametrization invariance, but not true for every observable

Spectral moments :

$$\langle M^{n}[w] \rangle = \int w^{n}(v, p_{\ell}, p_{\nu}) \frac{\mathrm{d}\Gamma}{\mathrm{d}\Phi} \,\mathrm{d}\Phi$$

 $w = (m_B v - q)^2 \Rightarrow \langle M_X^n \rangle$ Moments

 $w = v \cdot p_{\ell} \Rightarrow \langle E_{\ell}^n \rangle$ Moments

 $w = q^2 \Rightarrow \langle (q^2)^n \rangle$ Moments

not RPI (depends on *v*) not RPI (depends on *v*)

RPI! (does not depend on v)

$$d\Gamma = d\Gamma_{0} + d\Gamma_{\mu\pi} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + d\Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}} + d\Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}} + d\Gamma_{\rho_{LS}} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots$$

Bad news: number of these matrix elements increases if one increases expansion in $1/m_{b,c}$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] (M. Fael, T. Mannel, K. Vos)

→ Number of ME reduce by exploiting **reparametrization invariance**, but **not true for every observable**

Measurements of q^2 moments of inclusive $B \to X_c \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Measurements of Lepton **Mass squared moments** in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [PRD 107, 072002 (2023), arXiv:2205.06372]

 $|V_{cb}|$ from q^2

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [arXiv:2205.10274]

 $|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3} = (41.69 \pm 0.63) \cdot 10^{-3}$

Belle II

0.6

25

 $|V_{cb}|$ from q^2 versus $E_{\ell}: M_X^2$

Moment party: $q^2 : E^B_{\ell} : M^2_X$

Placeholder

https://arxiv.org/abs/2310.20324

The q^2 moments in inclusive semileptonic *B* decays

G. Finauri^{*a*} P. Gambino^{*a,b,c*}

Interesting future directions

Wilk mmen bais

Florian Bernlochner New Developments on inclusive V_{cb}

Doctaural

https://arxiv.org/abs/2312.05147

Inclusive semileptonic B_s^0 meson decays at the LHC via a sum-of-exclusive modes technique: possibilities and prospects

M. DE CIAN^{*a*}, N. FELIKS^{b,\dagger}, M. ROTONDO^{*c*} AND K. KERI VOS^{d,e}

LQCD might enter the scene

https://arxiv.org/abs/2311.09892

QED will enter the scene

https://arxiv.org/abs/2309.02849

QED effects in inclusive semi-leptonic B decays

Dante Bigi, Marzia Bordone,^{*a*} Paolo Gambino,^{*b,c,d*} Ulrich Haisch^{*c*} and Andrea Piccione^{*e*}

Discussion items

Wilk innen beid

Florian Bernlochner New Developments on inclusive V_{cb}

Restaurant

111111111111111

Isospin and Lifetimes